Skip to main content
Log in

Lifetimes of 0\(^+\) states in \(^{162}\)Dy

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Transfer reactions at the high-precision Q3D spectrometer at the University of Munich have shown that there are many low-lying excited K\(^{\pi }=0^+\) states in well-deformed nuclei. A recent study of \(^{162}\)Dy shows eleven 0\(^+\) states below an energy of 3 MeV. While this nucleus is studied extensively, the lifetimes of the new states were not known. We report on lifetime measurements of the newly observed states in order to determine their properties and allow the characterization of these states. Level lifetimes of 0\(^+\) states in \(^{162}\)Dy were measured by the (\(n,n^\prime \gamma \)) reaction and the Doppler-shift attenuation method at the University of Kentucky. This work allow us to report the transition probabilities from six of the eleven 0\(^+\) states. We suggest that the first excited K\(^\pi \) =  0\(^+\) excitation at 1400.2 keV in \(^{162}\)Dy may be the \(\beta \) vibrational excitation and not the \(\gamma \gamma \) excitation indicated in the past or a shape coexistence minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Mymanuscript has no associated data. [Authors’ comment: Data will be made available from the corresponding author on reasonable request.]

References

  1. S.R. Lesher, A. Aprahamian, L. Trache, A. Oros-Peusquens, S. Deyliz, A. Gollwitzer et al., New K\(^{\pi }=0^{+}\) bands in \(^{158}\)Gd. Phys. Rev. C 66, 051305(R) (2002). https://doi.org/10.1103/PhysRevC.66.051305

  2. H.F. Wirth, G. Graw, S. Christen, D. Cutoiu, Y. Esiermann, C. Günther et al., 0\(^+\) states in deformed actinide nuclei by the (\(p, t\)) reaction. Phys. Rev. C 69, 044310 (2004). https://doi.org/10.1103/PhysRevC.69.044310

  3. D.A. Meyer, V. Wood, R.F. Casten, C.R. Fitzpatrick, G. Graw, D. Bucurescu et al., Extensive investigation of 0\(^+\) states in rare earth region nuclei. Phys. Rev. C 74, 044309 (2006). https://doi.org/10.1103/PhysRevC.74.044309

    Article  ADS  Google Scholar 

  4. D. Bucurescu, G. Graw, R. Hertenberger, H.F. Wirth, N.L. Iudice, A.V. Sushkov et al., High-resolution study of 0\({}^{+}\) and 2\({}^{+}\) excitations in \(^{168}\text{Er}\) with the (\(p, t\)) reaction. Phys. Rev. C. 73, 064309 (2006). https://link.aps.org/doi/10.1103/PhysRevC.73.064309

  5. G. Suliman, D. Bucurescu, R. Hertenberger, H.F. Wirth, T. Faestermann, R. Krücken et al., Study of the \(^{130}\)Ba nucleus with the (\(p, t\)) reaction. Eur. Phys. J. A 36, 243 (2008). https://doi.org/10.1140/epja/i2008-10589-2

  6. L. Bettermann, S. Heinze, J. Jolie, D. Mücher, O. Möller, C. Scholl et al., High-resolution study of 0\(^+\) states in \(^{170}\)Yb. Phys. Rev. C 80, 044333 (2009). https://doi.org/10.1103/PhysRevC.80.044333

  7. C. Bernards, R.F. Casten, V. Werner, P. von Brentano, D. Bucurescu, G. Graw et al., High-resolution study of excited 0\(^+\) states in \(^{200}\)Hg and \(^{202}\)Hg. Phys. Rev. C 87, 064321 (2013). https://doi.org/10.1103/PhysRevC.87.064321

  8. C. Bernards, R.F. Casten, V. Werner, P. von Brentano, D. Bucurescu, G. Graw et al., Investigation of 0\(^+\) states in \(^{198}\)Hg after two-neutron pickup. Phys. Rev. C 87, 024318 (2013). https://doi.org/10.1103/PhysRevC.87.024318

  9. A.I. Levon, G. Graw, R. Hertenberger, S. Pascu, P.G. Thirolf, H.F. Wirth et al., 0\(^+\) states and collective bands in \(^{228}\)Th studied by the (\(p, t\)) reaction. Phys. Rev. C 88, 014310 (2013). https://doi.org/10.1103/PhysRevC.88.014310

  10. A.I. Levon, P. Alexa, G. Graw, R. Hertenberger, S. Pascu, P.G. Thirolf et al., Spectroscopy of \(^{232}\)U in the (\(p, t\)) reaction: More information on 0\(^+\) excitations. Phys. Rev. C 92, 064319 (2015). https://doi.org/10.1103/PhysRevC.92.064319

  11. M. Spieker, S. Pascu, D. Bucurescu, T.M. Shneidman, T. Faestermann, R. Hertenberger et al., High-resolution (\(p, t\)) studies of low-spin states in \(^{240}\)Pu: Octupole excitations, \(\alpha \) clustering, and other structure features. Phys. Rev. C 97, 064319 (2018). https://doi.org/10.1103/PhysRevC.97.064319

  12. D. Bucurescu, S. Pascu, G. Suliman, H.F. Wirth, R. Hertenberger, T. Faestermann et al., High-resolution study of \(^{166}\text{ Er }\) with the (\(p, t\)) reaction. Phys. Rev. C. 100, 044316 (2019). https://link.aps.org/doi/10.1103/PhysRevC.100.044316

  13. A.I. Levon, D. Bucurescu, C. Costache, T. Faestermann, R. Hertenberger, A. Ionescu et al., New data on \({0}^{+}\) states in \(^{158}\text{ Gd }\). Phys Rev C. 100, 034307 (2019). https://link.aps.org/doi/10.1103/PhysRevC.100.034307

  14. J.C. Nzobadila Ondze, B.M. Rebeiro, S. Triambak, L. Atar, G.C. Ball, V. Bildstein et al., Investigation of pair-correlated \({0}^{+}\) states in \(^{134}\text{ Ba }\) via the \(^{136}\text{ Ba }(p, t)\) reaction. Phys. Rev. C 103, 034329 (2021). https://doi.org/10.1103/PhysRevC.103.034329

  15. D. Bucurescu, S. Pascu, G. Graw, R. Hertenberger, H.F. Wirth, T. Faestermann et al., Updated analysis of the \(^{170}\text{ Er }(p, t)^{168}\text{ Er }\) reaction data. Phys. Rev. C 108, 014310 (2023). https://doi.org/10.1103/PhysRevC.108.014310

  16. S.R. Lesher, J.N. Orce, Z. Ammar, C.D. Hannant, M. Merrick, N. Warr et al., Study of 0\(^+\) excitations in \(^{158}\)Gd with the (\(n, n^{\prime }\gamma \)) reaction. Phys. Rev. C 76, 034318 (2007). https://doi.org/10.1103/PhysRevC.76.034318

  17. A. Aprahamian, X. Wu, S.R. Lesher, D.D. Warner, W. Gelletly, H.G. Börner et al., Complete spectroscopy of the \(^{162}\)Dy nucleus. Nucl. Phys. A 764, 42 (2006). https://doi.org/10.1016/j.nuclphysa.2005.09.020

  18. A. Aprahamian, S.R. Lesher, C. Casarella, H.G. Börner, M. Jentschel, Lifetime measurements in \(^{162}\text{ Dy }\). Phys. Rev. C 95, 024329 (2017). https://link.aps.org/doi/10.1103/PhysRevC.95.024329

  19. G. Alaga, K. Alder, A. Bohr, B.R. Mottelson, Intensity rules for beta and gamma transitions to nuclear rotational states. Dan. Mat. Fys. Medd. 29, 1 (1955)

    Google Scholar 

  20. P.E. Garrett, N. Warr, S.W. Yates, Nuclear structure studies with the inelastic neutron scattering reaction and gamma-ray detection. J. Res. Natl. Inst. Stand. Technol. 105, 141 (2000). https://doi.org/10.6028/jres.105.019

  21. T. Belgya, G. Molnár, S.W. Yates, Analysis of Doppler-shift attenuation measurements performed with accelerator-produced monoenergic neutrons. Nucl. Phys. A 607, 43 (1996). https://doi.org/10.1016/0375-9474(96)00221-7

  22. K.B. Winterbon, An analytic theory of Doppler-shift attenuation. Nucl. Phys. A 246, 293 (1975). https://doi.org/10.1016/0375-9474(75)90647-8

  23. C.A. McGrath, P.E. Garrett, M.F. Villani, S.W. Yates, Gamma-gamma coincidence measurements following inelastic neutron scattering. Nucl. Instrum. Methods Phys. Res. A 421, 458 (1999). https://doi.org/10.1016/S0168-9002(98)01170-X

  24. P.E. Garrett, H. Lehmann, J. Jolie, C.A. McGrath, M. Yeh, W. Younes et al., Properties of \(^{112}\)Cd from the (\(n, n^{\prime }\gamma \)) reaction: levels and level densities. Phys. Rev. C 64, 024316 (2001). https://doi.org/10.1103/PhysRevC.64.024316

  25. E.E. Peters, A. Chakraborty, B.P. Crider, B.H. Davis, M.K. Gnanamani, M.T. McEllistrem et al., Level lifetimes in the stable Zr nuclei: effects of chemical properties in Doppler-shift measurements. Phys. Rev. C 88, 024317 (2013). https://doi.org/10.1103/PhysRevC.88.024317

  26. C.W. Reich, \(^{162}\)Dy data sheets. Nucl. Data Sheets 108, 1807 (2007). https://doi.org/10.1016/j.nds.2007.07.002

  27. D.G. Burke, G. Løvhøiden, T.F. Thorsteinsen Studies of \(^{158,160,162,164,166}\)Dy levels with the (\(t, p\)) reaction. Nucl. Phys. A 483, 221 (1988). https://doi.org/10.1016/0375-9474(88)90533-7

  28. L.O. Edvardson, L. Westerberg, GCh. Madueme, E0 transitions from a K=0\(^+\) band in \(^{162}\)Dy. Nucl. Phys. A 252, 103 (1975). https://doi.org/10.1016/0375-9474(75)90604-1

  29. N.V. Zamfir, R.F. Casten, B. Liu, D.S. Brenner, C.J. Barton, R. Krücken et al., Status of the K\(^{\pi } = 0^+_2\) band in \(^{162}\)Dy. Phys. Rev. C 60, 054319 (1999). https://doi.org/10.1103/PhysRevC.60.054319

  30. D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler et al., Transition probabilities in \(^{154}\)Gd: Evidence for X(5) critical point symmetry. Phys. Rev. C 69, 034334 (2004). https://doi.org/10.1103/PhysRevC.69.034334

  31. J. Berzins, P. Prokofjevs, R. Georgii, R. Hucke, T. von Egidy, G. Hlawatsch et al., \(^{162}\)Dy studied with (\(n,\gamma \)), (\(n, n^{\prime }\gamma \)), (\(d, p\)) and (\(d, t\)) reactions. Nucl. Phys. A 584, 413 (1995). https://doi.org/10.1016/0375-9474(94)00522-O

  32. S. Frauendorf, The low-energy quadrupole mode of nuclei. Int. J. Mod. Phys. E Nucl. Phys. 24, 1 (2015). https://doi.org/10.1142/S0218301315410013

  33. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru et al., Structure of even–even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81, 014303 (2010). https://doi.org/10.1103/PhysRevC.81.014303

  34. D. Bonatsos, A. Martinou, S.K. Peroulis, T.J. Mertzimekis, N. Minkov, Shape coexistence in even–even nuclei: A theoretical overview. Atoms 11, 34 (2023). https://doi.org/10.3390/atoms11090117

  35. R. Bijker, A.E.L. Dieperink, Phys. Rev. C 26, 2688 (1982). https://doi.org/10.1103/PhysRevC.81.014303

  36. D.D. Warner, R.F. Casten, Interacting-Boson-Approximation E2 operator in deformed nuclei. Phys. Rev. C 25, 2019 (1982). https://doi.org/10.1103/PhysRevC.25.2019

  37. D.D. Warner, R.F. Casten, Revised formulation of the phenomenological interacting boson approximation. Phys. Rev. Lett. 48, 1385 (1982). https://doi.org/10.1103/PhysRevLett.48.1385

  38. R.F. Casten, D.D. Warner, The Interacting Boson Approximation. Rev. Mod. Phys. 60, 389 (1988). https://doi.org/10.1103/RevModPhys.60.389

  39. C. Fahlander, A. Axelsson, M. Heinebrodt, T. Härtlein, D. Schwalm, Two-phonon \(\gamma \)-vibrational states in \(^{166}\)Er. Phys. Lett. B 388, 475 (1996). https://doi.org/10.1016/S0370-2693(96)01203-8

  40. P.E. Garrett, M. Kadi, C.A. McGrath, V. Sorokin, M. Li, M. Yeh et al., The nature of 0\(^+\) excitations in \(^{166}\)Er. Phys. Lett. B 400, 250 (1997). https://doi.org/10.1016/S0370-2693(97)00373-0

  41. C.Y. Wu, D. Cline, M.W. Simon, G.A. Davis, R. Teng, A.O. Macchiavelli et al., Electromagnetic properties of the rotationally aligned band in \(^{162}\)Dy. Phys. Rev. C 64, 064317 (2001). https://doi.org/10.1103/PhysRevLett.48.1385

Download references

Acknowledgements

We thank H. E. Baber for his contributions to accelerator maintenance and operation. Special thanks to R. F. Casten for invaluable physics insight and discussions. This material is based upon work supported by the National Science Foundation (NSF) under grant numbers PHY-2011267 PHY-2209178, and PHY-2011890. The enriched isotope used in this research was supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aprahamian.

Ethics declarations

Code Availability Statement

This manuscript has no associated code/software. [Authors’ comment: The code used during analysis of the data is available from the corresponding author on reasonable request.]

Additional information

Communicated by Anu Kankainen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aprahamian, A., Casarella, C., Lesher, S.R. et al. Lifetimes of 0\(^+\) states in \(^{162}\)Dy. Eur. Phys. J. A 60, 83 (2024). https://doi.org/10.1140/epja/s10050-024-01295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01295-6

Navigation