Skip to main content
Log in

Influence of the Sintering Temperature on the Thermoelectric Properties of the Bi1.9Gd0.1Te3 Compound

  • XVI INTERNATIONAL CONFERENCE  “THERMOELECTRICS AND THEIR APPLICATIONS–2018” (ISCTA 2018), ST. PETERSBURG, OCTOBER 8–12, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The regularities of the influence of the sintering temperature (750, 780, 810, and 840 K) on the elemental composition, crystal-lattice parameters, electrical resistivity, Seebeck coefficient, total thermal conductivity, and thermoelectric figure of merit of the Bi1.9Gd0.1Te3 compound are investigated. It is established that the elemental composition of the samples during high-temperature sintering varies due to intense tellurium evaporation, which can lead to the formation of various point defects (vacancies and antisite defects) affecting the majority carrier (electron) concentration and mobility. The sintering temperature greatly affects the electrical resistivity of the samples, while the influence on the Seebeck coefficient and total thermal conductivity is much weaker. The largest thermoelectric figure of merit (ZT ≈ 0.55) is observed for the sample sintered at 750 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments (Springer, Berlin, 2001).

    MATH  Google Scholar 

  2. H. J. Goldsmid, Materials 7, 2577 (2014).

    Article  ADS  Google Scholar 

  3. H. Kitagawa, T. Nagamori, T. Tatsuta, T. Kitamura, Y. Shinohara, and Y. Noda, Scr. Mater. 49, 309 (2003).

    Article  Google Scholar 

  4. D. B. Hyun, T. S. Oh, J. S. Hwang, J. D. Shim, and N. V. Kolomoets, Scr. Mater. 40, 49 (1998).

    Article  Google Scholar 

  5. S. Miura, Y. Satob, K. Fukuda, K. Nishimura, and K. Ikeda, Mater. Sci. Eng. A 277, 244 (2000).

    Article  Google Scholar 

  6. O. Ivanov, O. Maradudina, and R. Lyubushkin, J. Alloys Compd. 586, 679 (2014).

    Article  Google Scholar 

  7. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  8. Y. Li, J. Jiang, G. Xu, W. Li, L. Zhou, Y. Li, and P. Cui, J. Alloys Compd. 480, 954 (2009).

    Article  Google Scholar 

  9. S. S. Kim, S. Yamamoto, and T. Aizawa, J. Alloys Compd. 375, 107 (2004).

    Article  Google Scholar 

  10. Y. Morisaki, H. Araki, H. Kitagawa, M. Orihashi, K. Hasezaki, and K. Kimura, Mater. Trans. 46, 2518 (2005).

    Article  Google Scholar 

  11. X. K. Duan, K. G. Hu, D. H. Ma, W. N. Zhang, Y. Z. Jiang, and S. C. Guo, Rare Met. 34, 770 (2015).

    Article  Google Scholar 

  12. P. Srivastava and K. Singh, Mater. Lett. 136, 337 (2014).

    Article  Google Scholar 

  13. B. Jarivala, D. Shah, and N. M. Ravindra, J. Electron. Mater. 44, 1509 (2015).

    Article  ADS  Google Scholar 

  14. Y. Pan, T. R. Wei, C. F. Wu, and J. F. Li, J. Mater. Chem. C 3, 10583 (2015).

    Article  Google Scholar 

  15. L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  Google Scholar 

  16. J. Suh, K. M. Yu, D. Fu, X. Liu, F. Yang, J. Fan, D. J. Smith, Y. H. Zhang, J. K. Furdyna, C. Dames, W. Walukiewicz, and J. Wu, Adv. Mater. 27, 3681 (2015).

    Article  Google Scholar 

  17. J. Yang, F. Wu, Z. Zhu, L. Yao, H. Song, and X. Hu, J. Alloys Compd. 619, 401 (2015).

    Article  Google Scholar 

  18. X. H. Ji, X. B. Zhao, Y. H. Zhang, B. H. Lu, and H. L. Ni, J. Alloys Compd. 387, 282 (2005).

    Article  Google Scholar 

  19. F. Wu, H. Song, J. Jia, and X. Hu, Prog. Nat. Sci. Mater. Int. 23, 408 (2013).

    Article  Google Scholar 

  20. F. Wu, W. Shi, and X. Hu, Electron. Mater. Lett. 11, 127 (2015).

    Article  ADS  Google Scholar 

  21. X. H. Ji, X. B. Zhao, Y. H. Zhang, B. H. Lu, and H. L. Ni, Mater. Lett. 59, 682 (2005).

    Article  Google Scholar 

  22. F. Wu, H. Z. Song, J. F. Jia, F. Gao, Y. J. Zhang, and X. Hu, Phys. Status Solidi A 210, 1183 (2013).

    Article  ADS  Google Scholar 

  23. W. Y. Shi, F. Wu, K. L. Wang, J. J. Yang, H. Z. Song, and X. J. Hu, Electron. Mater. 43, 3162 (2014).

    Article  ADS  Google Scholar 

  24. X. B. Zhao, Y. H. Zhang, and X. H. Ji, Inorg. Chem. Commun. 7, 386 (2004).

    Article  Google Scholar 

  25. O. Ivanov, M. Yaprintsev, R. Lyubushkin, and O. Soklakova, Scr. Mater. 146, 91 (2018).

    Article  Google Scholar 

  26. S. A. Humphry-Baker and C. A. Schuh, Nano Energy 36, 223 (2017).

    Article  Google Scholar 

  27. J. Lee, J. Kim, W. Moon, A. Berger, and J. Lee, J. Phys. Chem. C 116, 19512 (2012).

    Article  Google Scholar 

  28. J. Lee, A. Berger, L. Cagnon, U. Gosele, K. Nielsch, and J. Lee, Phys. Chem. Chem. Phys. 12, 15247 (2010).

    Article  Google Scholar 

  29. P. Losták, C. Drasar, D. Bachan, L. Benes, and A. Krejcová, Rad. Eff. Def. Sol. 165, 211 (2010).

    Article  Google Scholar 

  30. Yu. E. Kalinin, M. A. Kashirin, V. A. Makagonov, S. Yu. Pankov, and A. V. Sitnikov, Phys. Solid State 59, 21 (2017).

    Article  ADS  Google Scholar 

  31. D. C. Ghosh and R. Biswas, Int. J. Mol. Sci. 3, 87 (2002).

    Article  Google Scholar 

  32. M. V. Putz, N. Russo, and E. Sicilia, J. Phys. Chem. A 107, 5461 (2003).

    Article  Google Scholar 

  33. N. T. Nghi, A. L. Usiikans, and T. A. Cherepanova, Cryst. Res. Technol. 21, 367 (1986).

    Article  Google Scholar 

  34. M. Yaprintsev, R. Lyubushkin, O. Soklakova, and O. Ivanov, J. Electron. Mater. 47, 1362 (2018).

    Article  ADS  Google Scholar 

  35. Z. Stary, J. Horak, M. Stordeur, and M. Stolzer, J. Phys. Chem. Solids 49, 29 (1988).

    Article  ADS  Google Scholar 

  36. L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).

    Article  Google Scholar 

  37. J. C. A. Boeyens, Z. Naturforsch. 63b, 199 (2008).

  38. J. Horak, K. Cermak, and L. Koudelka, J. Phys. Chem. Solids 47, 805 (1986).

    Article  ADS  Google Scholar 

  39. M. Yaprintsev, R. Lyubushkin, O. Soklakova, and O. Ivanov, Rare Met. 37, 642 (2018).

    Article  Google Scholar 

  40. L. Yao, F. Wu, X. X. Wang, R. J. Cao, X. J. Li, X. Hu, and H. Z. Song, J. Electron. Mater. 45, 3053 (2016).

    Article  ADS  Google Scholar 

Download references

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-00415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Yapryntsev.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapryntsev, M.N., Vasiliev, A.E. & Ivanov, O.N. Influence of the Sintering Temperature on the Thermoelectric Properties of the Bi1.9Gd0.1Te3 Compound. Semiconductors 53, 615–619 (2019). https://doi.org/10.1134/S1063782619050300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619050300

Navigation