Skip to main content
Log in

Microstructure and thermoelectric properties of Bi1.9Lu0.1Te3 compound

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Effect of fabrication conditions on microstructure and thermoelectric properties of the Bi1.9Lu0.1Te3 compound was studied. Starting nanopowder with mean nanoparticle size of ~37 nm was synthesized by a microwave–solvothermal method. In order to prepare samples with various micro-grained structures, the synthesized nanopowder was compacted by two methods. The first method is cold isostatic pressing with further high-temperature annealing, while the second method is spark plasma sintering at various temperatures of process (653 and 683 K). It is found that mean grain size is equal to ~290, ~730 and ~1160 nm for cold isostatically pressed and spark plasma sintered at 653 and 683 K samples, respectively. The micro-grained sample with maximum mean grain size shows the best thermoelectric properties. This sample is structurally inhomogeneous and has the lowest thermal conductivity and the specific electrical resistivity. Maximum dimensionless figure of merit for this sample is equal to ~0.9 for temperature range of 450–500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahan G, Sales B, Sharp J. Thermoelectric materials: new approaches to an old problem. Phys Today. 1997;50(3):42.

    Article  Google Scholar 

  2. Tritt TM. Thermoelectric materials: holey and unholey semiconductors. Science. 1999;283(5403):804.

    Article  Google Scholar 

  3. Lan YC, Minnich AJ, Chen G, Ren ZF. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater. 2010;20(3):357.

    Article  Google Scholar 

  4. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  Google Scholar 

  5. Kitagawa H, Nagamori T, Tatsuta T, Kitamura T, Shinohara Y, Noda Y. Liquid phase growth of Bi0.5Sb1.5Te3 by sliding-boat method. Scr Mater. 2003;49(4):309.

    Article  Google Scholar 

  6. Hyun DB, Oh TS, Hwang JS, Shim JD, Kolomoets NV. Electrical and thermoelectric properties of 90% Bi2Te3-5% Sb2Te3-5% Sb2Se3 single crystals doped with SbI3. Scr Mater. 1998;40(1):49.

    Article  Google Scholar 

  7. Miura S, Satob Y, Fukuda K, Nishimura K, Ikeda K. Texture and thermoelectric properties of hot-extruded Bi2Te3 compound. Mater Sci Eng A. 2000;277(1–2):244.

    Article  Google Scholar 

  8. Ivanov O, Maradudina O, Lyubushkin R. Preparation and characterization of bulk composite constructed of Bi2Te3@SiO2 nanoparticles. J Alloys Compd. 2014;586:679.

    Article  Google Scholar 

  9. Yang J, Wu F, Zhu Z, Yao L, Song H, Hu X. Thermoelectrical properties of lutetium-doped Bi2Te3 bulk samples prepared from flower-like nanopowders. J Alloys Compd. 2015;619:401.

    Article  Google Scholar 

  10. Ji XH, Zhao XB, Zhang YH, Lu BH, Ni HL. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. J Alloys Compd. 2005;387(1–2):282.

    Article  Google Scholar 

  11. Wu F, Song H, Jia J, Hu X. Effect of Ce, Y and Sm on the thermoelectric properties of Bi2Te3 alloy. Prog Nat Sci Mater Int. 2013;23(4):408.

    Article  Google Scholar 

  12. Wu F, Shi W, Hu X. Preparation and thermoelectric properties of flower-like nanoparticles of Ce-doped Bi2Te3. Electron Mater Lett. 2015;11(1):127.

    Article  Google Scholar 

  13. Ji XH, Zhao XB, Zhang YH, Lu BH, Ni HL. Solvothermal synthesis and thermoelectric properties of lanthanum contained Bi–Te and Bi–Se–Te alloys. Mater Lett. 2005;59(6):682.

    Article  Google Scholar 

  14. Wu F, Song HZ, Jia JF, Gao F, Zhang YJ, Hu X. Thermoelectric properties of Ce-doped n-type Ce x Bi2 − x Te2.7Se0.3 nanocomposites. Phys Status Solidi A. 2013;210(6):1183.

    Article  Google Scholar 

  15. Shi WY, Wu F, Wang KL, Yang JJ, Song HZ, Hu X. Preparation and thermoelectric properties of yttrium-doped Bi2Te3 flower-like nanopowders. J Electron Mater. 2014;43(9):3162.

    Article  Google Scholar 

  16. Zhao XB, Zhang YH, Ji XH. Solvothermal synthesis of nano-sized La x Bi(2−x)Te3 thermoelectric powders. Inorg Chem Commun. 2004;7(3):386.

    Article  Google Scholar 

  17. Liu W, Yan X, Chen G, Ren Z. Recent advances in thermoelectric nanocomposites. Nano Energy. 2012;1(1):42.

    Article  Google Scholar 

  18. Li Y, Jiang J, Xu G, Li W, Zhou L, Li Y, Cui P. Synthesis and micro/nanostructured p-type Bi0.4Sb1.6Te3 and its thermoelectrical properties. J Alloys Compd. 2009;480(2):954.

    Article  Google Scholar 

  19. Kim SS, Yamamoto S, Aizawa T. Thermoelectric properties of anisotropy-controlled p-type Bi–Te–Sb system via bulk mechanical alloying and shear extrusion. J Alloys Compd. 2004;375(1–2):107.

    Article  Google Scholar 

  20. Morisaki Y, Araki H, Kitagawa H, Orihashi M, Hasezaki K, Kimura K. Bi2Te3-related thermoelectric samples with aligned-texture prepared by plastic deformation. Mater Trans. 2005;46(11):2518.

    Article  Google Scholar 

  21. Duan X-K, Hu K-G, Ma D-H, Zhang W-N, Jiang Y-Z, Guo S-C. Microstructure and thermoelectric properties of Bi0.5Na0.02Sb1.482−x In x Te3 alloys fabricated by vacuum melting and hot pressing. Rare Met. 2015;34(11):770.

    Article  Google Scholar 

  22. Ivanov O, Maradudina O, Lyubushkin R. Grain size effect on electrical resistivity of bulk nanograined Bi2Te3 material. Mater Charact. 2015;99:175.

    Article  Google Scholar 

  23. Lee SM, Cahill DG, Venkatasubramanian R. Thermal conductivity of Si–Ge superlattices. Appl Phys Lett. 1997;70(22):2957.

    Article  Google Scholar 

  24. Vining CB, Laskow W, Hanson JO, Van der Berk RR, Gorsuch PD. Thermoelectric properties of pressure-sintered Si0,8Ge0,2 thermoelectric alloys. J Appl Phys. 1991;69(8):4333.

    Article  Google Scholar 

  25. Zhang Q, Che S, Liu W, Lukas K, Yan X. Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy. 2012;1(1):183.

    Article  Google Scholar 

  26. Ji X, He J, Alboni P, Su Z, Gothard N, Zhang B, Tritt TM, Kolis JW. Thermal conductivity of CoSb3 nano-composites grown via a novel solvothermal nano-plating technique. Phys Status Solidi RRL. 2007;1(6):229.

    Article  Google Scholar 

  27. Zhang Q, He J, Zhu TJ, Zhang SN, Zhao XB, Tritt TM. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl Phys Lett. 2008;93(10):102109.

    Article  Google Scholar 

  28. Deng Y, Zhou XS, Wei GD, Liu J, Nan CW, Zhao SJ. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J Phys Chem Solids. 2002;63(11):2119.

    Article  Google Scholar 

  29. Zhao XB, Ji XH, Zhang YH, Lu BH. Effect of solvent on the microstructures of nanostructured Bi2Te3 prepared by solvothermal synthesis. J Alloys Compd. 2004;368(1–2):349.

    Article  Google Scholar 

  30. Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Elsevier; 2004. 520.

    Google Scholar 

  31. Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater. 2009;19(21):3476.

    Article  Google Scholar 

  32. Groza JR. Non-Equilibrium Processing of Materials. In: Suryanarayana C, editor. Science. Oxford: Elsevier; 1999. 47.

    Google Scholar 

  33. Moelle CH, Fecht HJ. Thermal stability of nanocrystalline iron prepared by mechanical attrition. Nanostruct Mater. 1995;6(1–4):421.

    Article  Google Scholar 

  34. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar R, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature. 2008;451(7175):163.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation (No. 3.6586.2017/BY and 03.G25.31.0246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaprintsev, M., Lyubushkin, R., Soklakova, O. et al. Microstructure and thermoelectric properties of Bi1.9Lu0.1Te3 compound. Rare Met. 37, 642–649 (2018). https://doi.org/10.1007/s12598-017-0926-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0926-5

Keywords

Navigation