Skip to main content
Log in

Dependence of SBA-15 formation on the block copolymer concentration in the course of synthesis with precursor containing ethylene glycol residues

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The formation of silica is governed by two parallel processes triggered by the addition of a precursor to a solution of P123 block copolymer. One process is sol–gel synthesis, while the other is the transformation of an initial micellar phase consisting of spherical micelles of P123 into a hexagonal mesophase, which serves as a template. The gelation of the reaction mixture terminates all transformations, thus making it possible to examine the phase state of the block copolymer at the moment of the sol–gel transition. The systematic study of systems with different P123 concentrations has shown that the structure, morphology, and porosity of the material is determined by the ratio between the rates of the aforementioned processes. A material with the structure of SBA-15 containing hexagonally packed cylindrical mesopores is formed at a block copolymer content of 10 wt %. As the P123 concentration is reduced, the rate of the transformations of its structures decreases relative to the rate of the sol–gel process. Analysis of electron micrographs has revealed that the material being formed contains, initially, irregular short rodlike mesopores rather than cylindrical ones; then, as the P123 concentration is further decreased, amorphous silica arises in the material. The role of their templates is played by intermediate structures formed during the transformation of the P123 micellar phase into the hexagonal mesophase. Advantages of the SBA-15 synthesis with the precurosr containing ethylene glycol residues are the good reproducibility, one-pot procedure, no addition of acid and organic solvent or heating, and the formation of bimodal monolithic material containing both meso- and macropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierre, A.C., Introduction to Sol-Gel Processing, Boston: Kluwer, 1998.

    Book  Google Scholar 

  2. Brinker, C.J. and Scherer, G.W., The Physics and Chemistry of Sol-Gel Processing, Boston: Academic, 1990.

    Google Scholar 

  3. Ying, J.Y., Mehnert, C.P., and Wong, M.S., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, p. 56.

    Article  CAS  Google Scholar 

  4. Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., and Patarin, J., Chem. Rev., 2002, vol. 102, p. 4093.

    Article  Google Scholar 

  5. Wan, Y. and Zhao, D.Y., Chem. Rev., 2007, vol. 107, p. 2821.

    Article  CAS  Google Scholar 

  6. Trewyn, B.G., Slowing, I.I., Giri, S., Chen, H.T., and Lin, V.S.Y., Acc. Chem. Res., 2007, vol. 40, p. 846.

    Article  CAS  Google Scholar 

  7. Melde, B.J., Johnson, B.J., and Charles, P.T., Sensors, 2008, vol. 8, p. 5202.

    Article  CAS  Google Scholar 

  8. Lu, A.H., Zhao, D., and Wan, Y., Nanocasting. A Versatile Strategy for Creating Nanostructured Porous Materials, Cambridge: RSC, 2010.

    Google Scholar 

  9. Pagliaro, M., Silica-Based Materials for Advanced Chemical Applications, Cambridge: RSC, 2009.

    Google Scholar 

  10. Zhao, D., Wan, Y., and Zhou, W., Ordered Mesoporous Materials, Weinheim: Wiley-VCH, 2013.

    Book  Google Scholar 

  11. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Science (Washington, D. C.), 1998, vol. 279, p. 548.

    Article  CAS  Google Scholar 

  12. Soler-Illia, G.J.A.A., Crepaldi, E.L., and Grosso, D., Curr. Opin. Colloid Interface Sci., 2003, vol. 8, p. 109.

    Article  CAS  Google Scholar 

  13. Ruthstein, S., Schmidt, J., Kesselman, E., Talmon, Y., and Goldfarb, D., J. Am. Chem. Soc., 2006, vol. 128, p. 3366.

    Article  CAS  Google Scholar 

  14. Zholobenko, V.L., Khodakov, A.Y., Imperor-Clerc, M., Durand, D., and Grillo, I., Adv. Colloid Interface Sci., 2008, vol. 142, p. 67.

    Article  CAS  Google Scholar 

  15. Linton, P., Rennie, A.R., and Alfredsson, V., Solid State Sci., 2011, vol. 13, p. 793.

    Article  CAS  Google Scholar 

  16. Manet, S., Schmitt, J., Imperor-Clerc, M., Zholobenko, V., Durand, D., Oliveira, C.L.P., Pedersen, J.S., Gervais, C., Baccile, N., Babonneau, F., Grillo, I., Meneau, F., and Rochas, C., J. Phys. Chem. B, 2011, vol. 115, p. 11330.

    Article  CAS  Google Scholar 

  17. Blin, J.L. and Imperor-Clerc, M., Chem. Soc. Rev., 2013, vol. 42, p. 4071.

    Article  CAS  Google Scholar 

  18. Postnova, I., Sarin, S., Silantev, V., Colloid Polym. Sci., 2017, vol. 295, p. 549.

    Article  CAS  Google Scholar 

  19. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry, New York: Wiley, 1979.

    Google Scholar 

  20. Hench, L.L., Sol-Gel Silica. Properties, Processing and Technology Transfer, Westwood: Noyes, 1998.

    Google Scholar 

  21. Pomogailo, A.D., Usp. Khim., 2000, vol. 69, p. 60.

    Article  Google Scholar 

  22. Shabanova, N.A. and Sarkisov, P.D., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Fundamentals of Sol-Gel Technology of Nanodisperse Silica), Moscow: Akademkniga, 2004.

    Google Scholar 

  23. Shchipunov, Y.A., in Bio-inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Applications, Ruiz-Hitzky, E., Ariga, K., and Lvov, Y.M., Eds., Weinheim: Wiley-VCH, 2008, p. 75.

    Google Scholar 

  24. Coradin, T., Boissiere, M., and Livage, J., Curr. Med. Chem., 2006, vol. 13, p. 99.

    Article  CAS  Google Scholar 

  25. Shilova, O.A., J. Sol-Gel Sci. Technol., 2013, vol. 68, p. 387.

    Article  CAS  Google Scholar 

  26. Ananikov, V.P., Khokhlova, E.A., Egorov, M.P., Sakharov, A.M., Zlotin, S.G., Kucherov, A.V., Kustov, L.M., Gening, M.L., and Nifantiev, N.E., Mendeleev Commun., 2015, vol. 25, p. 75.

    Article  CAS  Google Scholar 

  27. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., J. Am. Chem. Soc., 1998, vol. 120, p. 6024.

    Article  CAS  Google Scholar 

  28. Wanka, G., Hoffmann, H., and Ulbricht, W., Macromolecules, 1994, vol. 27, p. 4145.

    Article  CAS  Google Scholar 

  29. Shchipunov, Y.A., J. Colloid Interface Sci., 2003, vol. 268, p. 68.

    Article  CAS  Google Scholar 

  30. Postnova, I.V., Li-Jen Chen, and Shchipunov, Yu.A., Colloid J., 2013, vol. 75, p. 231.

    Article  CAS  Google Scholar 

  31. Shchipunov, Y., Postnova, I., and Sarin, S., Colloid Polym. Sci., 2015, vol. 293, p. 3369.

    Article  CAS  Google Scholar 

  32. Shchipunov, Y.A. and Karpenko, T.Y., Langmuir, 2004, vol. 20, p. 3882.

    Article  CAS  Google Scholar 

  33. Shchipunov, Yu.A., Krekoten’, A.V., Kuryavyi, V.G., and Topchieva, I.N., Colloid J., 2005, vol. 67, p. 380.

    Article  CAS  Google Scholar 

  34. Shchipunov, Y.A. and Shipunova, N.Y., Colloids Surf. B, 2008, vol. 63, p. 7.

    Article  CAS  Google Scholar 

  35. Ivanova, R., Lindman, B., and Alexandridis, P., J. Colloid Interface Sci., 2002, vol. 251, p. 226.

    Article  Google Scholar 

  36. Yang, X.Y., Li, Y., Lemaire, A., Yu, J.G., and Su, B.L., Pure Appl. Chem., 2009, vol. 81, p. 2265.

    Article  CAS  Google Scholar 

  37. Colombo, P., Vakifahmetoglu, C., and Costacurta, S., J. Mater. Sci., 2010, vol. 45, p. 5425.

    Article  CAS  Google Scholar 

  38. Nakanishi, K. and Kanamori, K., J. Mater. Chem., 2005, vol. 15, p. 3776.

    Article  CAS  Google Scholar 

  39. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, p. 603.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shchipunov.

Additional information

Original Russian Text © I.V. Postnova, Chang-Sik Ha, Yu.A. Shchipunov, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 3, pp. 324–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnova, I.V., Ha, CS. & Shchipunov, Y.A. Dependence of SBA-15 formation on the block copolymer concentration in the course of synthesis with precursor containing ethylene glycol residues. Colloid J 79, 378–385 (2017). https://doi.org/10.1134/S1061933X17030127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X17030127

Navigation