Skip to main content
Log in

Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The practical applications of crystalline porous materials toward industrial separations require shaping them into robust monoliths (e.g., foams). The current methods are often complicated, environmentally unfriendly, and unscalable, significantly hampering their practical application. Herein, we report a scalable, facile “one-step thermomolding” method to fabricate a class of hierarchically olefin-linked covalent organic framework (COF) foams via melt polymerization. The obtained pure COF foams possess higher crystallinity and porosity than literature, good moldability, and processability, greatly benefiting their practical applications (e.g., efficient oil-water separation with 99% removal efficiency and >100 cycle reusability). Moreover, a COF exhibiting the smallest (0.58 nm) eclipsed stacking pore among all 2-dimensional COFs with neutral skeletons is first fabricated via this protocol, demonstrating good C2H2 purification performance and recyclability, surpassing the current benchmark materials. We believe that this facile fabrication strategy can promote access to a broad diversity of new COF foams and enlighten further avenues for green routes to large-scale synthesis and usage of COFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N. Nat Mater, 2017, 16: 16–22

    Article  CAS  Google Scholar 

  2. Sholl DS, Lively RP. Nature, 2016, 532: 435–437

    Article  PubMed  Google Scholar 

  3. Ge J, Zhao HY, Zhu HW, Huang J, Shi LA, Yu SH. Adv Mater, 2016, 28: 10459–10490

    Article  CAS  PubMed  Google Scholar 

  4. Li JR, Kuppler RJ, Zhou HC. Chem Soc Rev, 2009, 38: 1477–1504

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Zheng Y, An H, Aguila B, Yang CX, Dong Y, Xie W, Cheng P, Zhang Z, Chen Y, Ma S. Angew Chem Int Ed, 2018, 57: 16754–16759

    Article  CAS  Google Scholar 

  6. Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat Chem, 2019, 11: 587–594

    Article  CAS  PubMed  Google Scholar 

  7. He C, Wang Y, Chen Y, Wang X, Yang J, Li L, Li J. ACS Appl Mater Interfaces, 2020, 12: 52819–52825

    Article  CAS  PubMed  Google Scholar 

  8. Zhao S, Jiang C, Fan J, Hong S, Mei P, Yao R, Liu Y, Zhang S, Li H, Zhang H, Sun C, Guo Z, Shao P, Zhu Y, Zhang J, Guo L, Ma Y, Zhang J, Feng X, Wang F, Wu H, Wang B. Nat Mater, 2021, 20: 1551–1558

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Yang J, Pachfule P, Li S, Ye MY, Schmidt J, Thomas A. Nat Commun, 2020, 11: 4712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Han N, Zhang Z, Gao H, Qian Y, Tan L, Yang C, Zhang H, Cui Z, Li W, Zhang X. ACS Appl Mater Interfaces, 2020, 12: 2926–2934

    Article  CAS  PubMed  Google Scholar 

  11. Cui WR, Zhang CR, Liang RP, Liu J, Qiu JD. ACS Appl Mater Interfaces, 2021, 13: 31561–31568

    Article  CAS  PubMed  Google Scholar 

  12. Karak S, Kandambeth S, Biswal BP, Sasmal HS, Kumar S, Pachfule P, Banerjee R. J Am Chem Soc, 2017, 139: 1856–1862

    Article  CAS  PubMed  Google Scholar 

  13. Karak S, Dey K, Torris A, Halder A, Bera S, Kanheerampockil F, Banerjee R. J Am Chem Soc, 2019, 141: 7572–7581

    Article  CAS  PubMed  Google Scholar 

  14. Liu R, Yan Q, Tang Y, Liu R, Huang L, Shuai Q. J Hazard Mater, 2022, 421: 126702

    Article  CAS  PubMed  Google Scholar 

  15. Zhu D, Zhu Y, Yan Q, Barnes M, Liu F, Yu P, Tseng CP, Tjahjono N, Huang PC, Rahman MM, Egap E, Ajayan PM, Verduzco R. Chem Mater, 2021, 33: 4216–4224

    Article  CAS  Google Scholar 

  16. Martín-Illán JÁ, Suárez JA, Gómez-Herrero J, Ares P, Gallego-Fuente D, Cheng Y, Zhao D, Maspoch D, Zamora F. Adv Sci, 2022, 9: 2104643

    Article  CAS  Google Scholar 

  17. Zhao W, Wang TP, Wu JL, Pan RP, Liu XY, Liu XK. Chin J Polym Sci, 2019, 37: 1045–1052

    Article  CAS  Google Scholar 

  18. Ma Q, Zeng L, Liu X, Zhuang Q, Qian J. Microporous Mesoporous Mater, 2022, 331: 111623

    Article  CAS  Google Scholar 

  19. Guo Z, Jiang H, Wu H, Zhang L, Song S, Chen Y, Zheng C, Ren Y, Zhao R, Li Y, Yin Y, Guiver MD, Jiang Z. Angew Chem Int Ed, 2021, 60: 27078–27085

    Article  CAS  Google Scholar 

  20. Liu Z, Zhang K, Huang G, Xu B, Hong YL, Wu X, Nishiyama Y, Horike S, Zhang G, Kitagawa S. Angew Chem Int Ed, 2022, 61: e202110695

    CAS  Google Scholar 

  21. Anantharaj S, Jayakannan M. J Polym Sci Part A-Polym Chem, 2016, 54: 2864–2875

    Article  CAS  Google Scholar 

  22. Zhu W, Huang X, Li C, Xiao Y, Zhang D, Guan G. Polym Int, 2011, 60: 1060–1067

    Article  CAS  Google Scholar 

  23. Zhuang X, Zhao W, Zhang F, Cao Y, Liu F, Bi S, Feng X. Polym Chem, 2016, 7: 4176–4181

    Article  CAS  Google Scholar 

  24. Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science, 2017, 357: 673–676

    Article  CAS  PubMed  Google Scholar 

  25. He T, Geng K, Jiang D. Trends Chem, 2021, 3: 431–444

    Article  CAS  Google Scholar 

  26. Yuan C, Fu S, Yang K, Hou B, Liu Y, Jiang J, Cui Y. J Am Chem Soc, 2021, 143: 369–381

    Article  CAS  PubMed  Google Scholar 

  27. Yang S, Streater D, Fiankor C, Zhang J, Huang J. J Am Chem Soc, 2021, 143: 1061–1068

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Yang Y, Zhao Z, Zhang P, Zhang Y, Liu J, Ma S, Cheng P, Chen Y, Zhang Z. Nat Commun, 2021, 12: 1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen JS, Zhang F. Angew Chem Int Ed, 2021, 60: 13614–13620

    Article  CAS  Google Scholar 

  30. Lyu H, Diercks CS, Zhu C, Yaghi OM. J Am Chem Soc, 2019, 141: 6848–6852

    Article  CAS  PubMed  Google Scholar 

  31. Li YJ, Cui WR, Jiang QQ, Wu Q, Liang RP, Luo QX, Qiu JD. Nat Commun, 2021, 12: 4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jadhav T, Fang Y, Liu CH, Dadvand A, Hamzehpoor E, Patterson W, Jonderian A, Stein RS, Perepichka DF. J Am Chem Soc, 2020, 142: 8862–8870

    Article  CAS  PubMed  Google Scholar 

  33. Acharjya A, Pachfule P, Roeser J, Schmitt FJ, Thomas A. Angew Chem Int Ed, 2019, 58: 14865–14870

    Article  CAS  Google Scholar 

  34. Wang Y, Hao W, Liu H, Chen R, Pan Q, Li Z, Zhao Y. Nat Commun, 2022, 13: 100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bi S, Zhang Z, Meng F, Wu D, Chen JS, Zhang F. Angew Chem Int Ed, 2022, 61: e202111627

    CAS  Google Scholar 

  36. Du C, Zhu X, Yang C, Liu M. Angew Chem Int Ed, 2021, e202113979

  37. Zhao Z, Zheng D, Guo M, Yu J, Zhang S, Zhang Z, Chen Y. Angew Chem Int Ed, 2022, 61: e202200261

    CAS  Google Scholar 

  38. Cai K, Wang W, Zhang J, Chen L, Wang L, Zhu X, Yu Z, Wu Z, Zhou H. J Mater Chem A, 2022, doi: https://doi.org/10.1039/D1TA09684B

  39. Karjalainen E, Wales DJ, Gunasekera DHAT, Dupont J, Licence P, Wildman RD, Sans V. ACS Sustain Chem Eng, 2018, 6: 3984–3991

    Article  CAS  Google Scholar 

  40. Ataei M, Shaayegan V, Wang C, Costa F, Han S, Park CB, Bussmann M. J Rheol, 2019, 63: 895–903

    Article  CAS  Google Scholar 

  41. Zhai L, Yang S, Yang X, Ye W, Wang J, Chen W, Guo Y, Mi L, Wu Z, Soutis C, Xu Q, Jiang Z. Chem Mater, 2020, 32: 9747–9752

    Article  CAS  Google Scholar 

  42. Jadhav T, Fang Y, Patterson W, Liu CH, Hamzehpoor E, Perepichka DF. Angew Chem Int Ed, 2019, 58: 13753–13757

    Article  CAS  Google Scholar 

  43. Wei S, Zhang F, Zhang W, Qiang P, Yu K, Fu X, Wu D, Bi S, Zhang F. J Am Chem Soc, 2019, 141: 14272–14279

    Article  CAS  PubMed  Google Scholar 

  44. Jin FL, Zhao M, Park M, Park SJ. Polymers, 2019, 11: 953

    Article  CAS  PubMed Central  Google Scholar 

  45. Xie Z, Wang B, Yang Z, Yang X, Yu X, Xing G, Zhang Y, Chen L. Angew Chem Int Ed, 2019, 58: 15742–15746

    Article  CAS  Google Scholar 

  46. Liang RR, Xu SQ, Zhang L, A RH, Chen P, Cui FZ, Qi QY, Sun J, Zhao X. Nat Commun, 2019, 10: 4609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schrope M. Nature, 2010, 466: 680–684

    Article  PubMed  CAS  Google Scholar 

  48. Miyoshi Y, Okada J, Urata T, Shintani M, Kimbara K. Microorganisms, 2020, 8: 291

    Article  CAS  PubMed Central  Google Scholar 

  49. Wang B, Liang W, Guo Z, Liu W. Chem Soc Rev, 2015, 44: 336–361

    Article  PubMed  Google Scholar 

  50. Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Molecules, 2018, 23: 2442

    Article  PubMed Central  CAS  Google Scholar 

  51. Reid CR, Thomas KM. Langmuir, 1999, 15: 3206–3218

    Article  CAS  Google Scholar 

  52. Ma JX, Guo J, Wang H, Li B, Yang T, Chen B. Inorg Chem, 2017, 56: 7145–7150

    Article  CAS  PubMed  Google Scholar 

  53. He Y, Xiang S, Zhang Z, Xiong S, Fronczek FR, Krishna R, O’Keeffe M, Chen B. Chem Commun, 2012, 48: 10856–10858

    Article  CAS  Google Scholar 

  54. Fan W, Wang X, Liu X, Xu B, Zhang X, Wang W, Wang X, Wang Y, Dai F, Yuan D, Sun D. ACS Sustain Chem Eng, 2019, 7: 2134–2140

    Article  CAS  Google Scholar 

  55. Wang Y, He M, Gao X, Wang X, Xu G, Zhang Z, He Y. Inorg Chem Front, 2019, 6: 263–270

    Google Scholar 

  56. Liu L, Yao Z, Ye Y, Chen L, Lin Q, Yang Y, Zhang Z, Xiang S. Inorg Chem, 2018, 57: 12961–12968

    Article  CAS  PubMed  Google Scholar 

  57. Peng YL, Pham T, Li P, Wang T, Chen Y, Chen KJ, Forrest KA, Space B, Cheng P, Zaworotko MJ, Zhang Z. Angew Chem Int Ed, 2018, 57: 10971–10975

    Article  CAS  Google Scholar 

  58. Li P, He Y, Zhao Y, Weng L, Wang H, Krishna R, Wu H, Zhou W, O’Keeffe M, Han Y, Chen B. Angew Chem Int Ed, 2014, 54: 574–577

    Google Scholar 

  59. Pei J, Shao K, Wang JX, Wen HM, Yang Y, Cui Y, Krishna R, Li B, Qian G. Adv Mater, 2020, 32: 1908275

    Article  CAS  Google Scholar 

  60. Liu L, Yao Z, Ye Y, Yang Y, Lin Q, Zhang Z, O’Keeffe M, Xiang S. J Am Chem Soc, 2020, 142: 9258–9266

    Article  CAS  PubMed  Google Scholar 

  61. Chen L, Gong C, Wang X, Dai F, Huang M, Wu X, Lu CZ, Peng Y. J Am Chem Soc, 2021, 143: 10243–10249

    Article  CAS  PubMed  Google Scholar 

  62. Guo X, Lin E, Gao J, Mao T, Yan D, Cheng P, Ma S, Chen Y, Zhang Z. Angew Chem Int Ed, 2021, 60: 2974–2979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22175099), 111 Projects (B12015), and Frontiers Science Center for New Organic Matter (63181206). We also thank Professor Yafei Li’s team from Nanjing Normal University for their support with structure simulations, and Professor Libo Li for his help to test the adsorption and desorption kinetics of NKCOF-12 and ZJU-74.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjie Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, Z., Yang, Y. et al. Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators. Sci. China Chem. 65, 1173–1184 (2022). https://doi.org/10.1007/s11426-022-1224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1224-3

Navigation