Skip to main content
Log in

Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The results of long-term researches of thin films prepared from tetraethoxysilane-derived sols containing inorganic and organic additives are systematized and analyzed. These additives give to films certain physicochemical properties for their application in electronic techniques, optics, power engineering, in biological technologies etc. The influence both inorganic (salts, acids) and organic (polyols, polyionenes, epoxy resin) additives on rheological properties and aggregate stability of sols as well as films surface morphology is minutely considered. The explanations of phenomena during film formation, including spin-coating process, are given. Essential influence of temperature and humidity on films surface morphology is shown. Influence of heat treatment modes on structure and composition of films is analyzed. Recommendations about optimization of thin films sol–gel processing are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Lutetium diphthalocyanine has been synthesized and characterized at the National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute.

  2. The DND has been synthesized and characterized in the Special Engineering Department “Tekhnolog” in the Saint-Petersburg State Technological Institute (Technical University).

  3. \( \tau_{s} \)—the effective shear stress or statistic critical shear stress at the minimum strain rate \( \varepsilon^{'} \)=0.3 s−1.

  4. \( \eta_{0} \)—maximum viscosity (at the strain rate \( \varepsilon^{'} \)=0.3 s−1 minimum possible for the viscometer).

References

  1. Grebenschikov IV, Vlasov AG, Neporent BS, Sujkovskaya NV (1946) Blooming of optics (Prosvetlenie optiki). Gostekhizdat, Moscow

    Google Scholar 

  2. Sujkovskaya NV (1971) Chemical methods of preparing thin transparency films (Khimicheskie metody polycheniya tonkikh prozrachnykh plenok). Khimiya, Leningrad

    Google Scholar 

  3. Shcreder X (1969) In: Hass G, Thun RE (eds) Physics of thin films: Advances in research and development, vol 5. Academic Press, New York and London

    Google Scholar 

  4. Borisenko AI, Novikov VV, Prikhidko NE, Mitnikova IM, Chepik LPh (1972) Thin inorganic films for microelectronics (Tonkie neorganicheskie plenki dlya mikroelektroniki). Nauka, Leningrad

    Google Scholar 

  5. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  6. Malik F, Solanki R (1990) Thin Solid Films 193/194: 1030-1037

    Google Scholar 

  7. Shilova OA, Chepik LPh, Bubnov YuZ (1995) Rus J Appl Chem 68:1608–1612

    Google Scholar 

  8. Guglielmi M (1997) J Sol-Gel Technol 8:443–449

    Google Scholar 

  9. Turevskaya EP, Bergo VD, Vorotilov KA, Sigov AS, Benlian D (1998) J Sol-Gel Sci Technol 13:889–893

    Article  Google Scholar 

  10. Chen D (2001) Sol Energy Mater Sol Cells 68:313–336

    Article  Google Scholar 

  11. Martucci A, Bassiri N, Guglielmi M, Armelao L, Gross S, Pivin JC (2003) Sol-Gel Sci Technol 26:993–996

    Article  Google Scholar 

  12. Shilova OA, Bubnov YuZ (2003) In: Siciliano P (ed) New developments on sensors for environmental control (ENVSENS). Singapore, Word Scientific

    Google Scholar 

  13. Shilova OA (2003) Surf Coat Int, Part B: Coat Trans 86 N B3: 195-202

  14. Grätzel M (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  15. Yoshida N, Watanabe T (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  16. Makita K (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  17. Yamazaki S (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  18. Ito T (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  19. Heusing S, Aegerter MA (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  20. Shilova OA (2005) Glass Phys Chem 31:201–218

    Article  Google Scholar 

  21. Shilova OA (2006) Adv Sci. Tech 45: 793-798. http://www.scientific.net. Trans Tech Publications, 2006

  22. Hessel CM, Mark AS, Meldrum A, Malac M, Veinot JGC (2007) Adv Mater 19:3513–3516

    Article  Google Scholar 

  23. Bromley KM, Patil AJ, Seddon AM, Booth P, Mann S (2007) Adv Mater 19:2433–2438

    Article  Google Scholar 

  24. Gurin VS, Alexeenko AA, Tyavlovskaya EA, Kasparov KN (2008) Thin Solid Films 516:1464–1467

    Article  Google Scholar 

  25. Vorotilov KA, Sigov AS (2008) J Nano Microsyst Tech 10:30–42

    Google Scholar 

  26. Smirnova IV, Shilova OA, Bubnov YuZ (2009) Investigation of the parameters of layers prepared through diffusion of boron and gadolinium from silicate and hybrid films into silicon wafers. Glass Phys Chem. doi:10.1134/s1087659609010155

    Google Scholar 

  27. Smirnova IV, Shilova OA, Moshnikov VA, Gamarts AE (2009) Features of simultaneous diffusion of boron and gadolinium in silicon from nanoscale hybrid organic-inorganic films. Semiconduct. doi:10.1134/s1063782609100248

    Google Scholar 

  28. Shilova OA, Khamova TV, Vlasov DYu, Ryabusheva YuV, Frank-Kamenetskaya OV, Marugin AM, Mikhal’chuk VM, Dolmatov VYu (2009) In: The Second Nanotechnology International Forum (Rusnanotech’09). Abstracts, Rusnano, Moscow

    Google Scholar 

  29. Shapovalov VI, Shilova OA, Smirnova IV, Zav’yalov AV, Lapshin AE, Magdysyuk OV, Panov MF, Plotnikov VV, Shutova NS (2011) Modification of the glass surface by titanium dioxide films synthesized through the sol-gel method. Glass Phys Chem. doi:10.1134/s1087659611020143

    Google Scholar 

  30. Frank-Kamenetskaya OV, Vlasov DYu, Shilova OA (2011) In: Krivovichev SV (ed) Minerals as Advanced Materials, II. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  31. Vlasov DYu, Frank-Kamenetskaya OV, Marygin AM, Ryabusheva YuV, Timasheva MA, Shilova OA, Khamova TV, Chelibanov VP, Dolmatov VYu, Rytikova VV (2008) In: Timofeev VN (ed) Monuments. St-Peterbg, A supervision vector. The collection of articles on restoration of a sculpture and monitoring of a condition of monuments in the city environment. Soyuz-Dizajn

    Google Scholar 

  32. Moshnikov VA, Gracheva IE, Kuznetsov VV, Maximov AI, Karpova SS, Ponomareva AA (2010) J Non-Cryst Solids 356:2020–2025

    Article  Google Scholar 

  33. Langlet M (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  34. Garcia-Murillo A, Le Luyer-Urlacher C, Dujardin C, Pédrini C, Mugnier J (2003) J. Sol-Gel Sci Technol 26:957–960

    Article  Google Scholar 

  35. Fidalgo A, Ilhargo LM (2003) J. Sol-Gel Sci Technol 26:357–362

    Article  Google Scholar 

  36. Khamova TV, Shilova OA, Ladilina EYu, Lyubova TS, Esipova NE, Pugachev KE, Antipov VN, Kruchinina IYu (2013) Glass Phys Chem 39: in print

  37. Tsvetkova IN, Shilova OA, Voronkov MG, Gomza YuP, Sukhoy KM (2008) Sol-gel synthesis and investigation of proton-conducting hybrid organic-inorganic silicophosphate materials. Glass Phys Chem. doi:10.1134/s1087659608010100

    Google Scholar 

  38. Shilova OA (2010) Heterogeneous sol-gel systems: derived ceramics. Adv Sci Tech. doi:10.4028/www.scientific.net/AST.63.131

    Google Scholar 

  39. Shilova OA, Hashkovsky SV, Kuznetsova LA (2003) J. Sol-Gel Sci Technol 26:687–691

    Article  Google Scholar 

  40. Shilova O (2005) Silicate and hybrid nanocomposite materials formed by sol-gel processing. Doctoral thesis (Dr Chem Sci). St-Peterbg

  41. Borisenko AI, Nikolaeva LV (1970) Thin glass coatings (Tonkie stekloemalevye pokrytiya). Nauka, Leningrad

    Google Scholar 

  42. Khamova TV, Shilova OA, Golikova EV (2006) Investigation of the structuring in the sol-gel systems based on tetraethoxysilane. Glass Phys Chem. doi:10.1134/s1087659606040092

    Google Scholar 

  43. Movchan TG, Urev NB, Khamova TV, Tarasyuk EV, Potapov AN, Shilova OA, Klimenko NS, Shevchenko VV (2005) Glass Phys Chem 31:219–228

    Article  Google Scholar 

  44. Mikhailova SS, Karban’ OV, Shilova OA, Khamova TV, Surnin DV (2009) Investigation of the surface of silica films doped with Fe and Co. Glass Phys Chem. doi:10.1134/s1087659609050058

    Google Scholar 

  45. Hashkovsky SV, Shilova OA, Khamova TV, Domanskii AI, Moshnikov VA (2007) Influence of a high-frequency field on the formation of photosensitive thin-film materials synthesized by the sol-gel method. Glass Phys Chem. doi:10.1134/s1087659607040062

    Google Scholar 

  46. Ravanie D, Seminel A, Charbouillot Y, Vincens M (1986) J Non-Cryst Solids 82:210–219

    Article  Google Scholar 

  47. Vasil’ev VA, Seregin DS, Vorotilov KA (2007) J Nano Microsystem Tech 12:23–28

    Google Scholar 

  48. Shilova OA, Tarasyuk EV, Shevchenko VV, Klimenko NS, Movchan TG, Hashkovsky SV, Shilov VV (2003) Glass Phys Chem 29:378–389

    Article  Google Scholar 

  49. Shilova OA, Shilov VV (2004) In: Shpak AP (ed) Nanosystems, Nanotechnologies, Nanomaterials: 1. Kiev, Akademperiodika

    Google Scholar 

  50. Khamova TV, Shilova OA, Vlasov DYU, Ryabusheva YUV, Mikhal’chuk VM, Ivanov VK, Frank-Kamenetskaya OV, Marygin AM, Dolmatov VYU (2012) Inorg Mater 48:702–708

    Article  Google Scholar 

  51. Khamova TV, Shilova OA, Movchan TG, Sazhnikov VA, Rusanov AI (2008) Sol-gel synthesis and fluorescence properties of hybrid nanocomposite materials doped with the Nile red dye. Glass Phys Chem. doi:10.1134/s1087659608010094

    Google Scholar 

  52. Movchan TG, Khamova TV, Shilova OA, Plachev YuA, Sokolova NP, Gorbunov AM, Sazhnikov VA (2009) Influence of the composition and structure of epoxy siloxane matrix on the spectral behavior of the Nile red dye: I. Sol-gel system based on tetraethoxysilane and a mixture of epoxy resins. Glass Phys Chem. Doi: 10.1134/s1087659609010131

  53. Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) J Amer Ceram Soc 18:2849–2852

    Google Scholar 

  54. Movchan TG, Plachev YUA, Sokolova NP, Gorbunov AM, Khamova TV, Shilova OA, Sazhnikov VA (2009) Glass Phys Chem 35:170–175

    Article  Google Scholar 

  55. Matejka L, Dukh O, Brus J, Simonsick WJJr, Meissner B (2000) J Non-Cryst Solids 270:34–47

    Article  Google Scholar 

  56. Shilova OA, Khamova TV, Vlasov DYu, Mikhal’chuk VM, Frank-Kamenetskaya OV, Marugin AM, Dolmatov VYu (2007) In: Gavrilenko V, Panova E (eds) Bio-inert Interaction: Life and Rocks (Mater III Int Symp). St-Peterbg State Univ, St-Peterbg

    Google Scholar 

  57. Subbiah S, Mokaya R (2003) Chem Commun 7:860-861

    Google Scholar 

  58. Khamova T V (2010) Development and research of composite materials based on the doped silica sols and disperse oxides of aluminum. PhD dissertation (Candidate Chem Sci). St-Peterbg

  59. Shilova O (2004) Phenomena of a phase separation and crystallisation in nanosized spin-on glass films used in microelectronics. Glass Technol 45:59–61

    Google Scholar 

  60. Tarasyuk EV (2005) Development of glass-ceramic electrical insulating coatings prepared by means of sol-gel technology based on organic-inorganic hybrids. PhD dissertation (Candidate Chem Sci). St-Peterbg

  61. Voronkov MG, Mileshkevich VP, Yuzhelevskii YuA (1978) The siloxane bond, physical properties and chemical transformations. Studies in Soviet science, New York, London

    Google Scholar 

  62. Smirnova IV, Shilova OA, Moshnikov VA, Panov MF, Shevchenko VV, Klimenko NS (2006) Investigation of physicochemical properties, structure and composition of nanosized borosilicate films prepared by the sol–gel method. Glass Phys Chem. doi:10.1134/s1087659606040109

    Google Scholar 

  63. Smirnova IV, Shilova OA, Efimenko LP, Pugachev KE, Moshnikov VA, Bubnov YuZ (2007) Investigation into the surface morphology of nanosized silicate and hybrid films by optical and atomic-force microscopy. Glass Phys Chem. doi:10.1134/s1087659607040025

    Google Scholar 

  64. Smirnova IV, Shilova OA, Movchan TG (2010) Specific features of structuring of film-forming silica sols in the presence of boric acid and four-arm polyol with hyperbranched structure. Rus J Appl Chem. doi:10.1134/s1070427210120116

    Google Scholar 

  65. Akopova OV, Eremenko BV (1994) Colloid J 56:5–10

    Google Scholar 

  66. Iler RK (1979) The Chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York

    Google Scholar 

  67. Efremov IF, Lukashenko GM, Terent’eva EA (1980) Colloid J 42:859–865

    Google Scholar 

  68. Trapeznikov AA, Frolova EA (1878) Colloid J 40:728–734

    Google Scholar 

  69. Tikhonov AP, Senapova OV, Krivishcepov AF (1976) Colloid J 38:1022–1025

    Google Scholar 

  70. Tikhonov AP, Krivishcepov AF (1979) Colloid J 41:1212–1213

    Google Scholar 

  71. Liquid interface (1983) In: Parfit G, Rochester C (eds) Adsorption from solution on the solid. Academic, London

    Google Scholar 

  72. Innocenzi P, Brusatin G, Guglielmi M, Bertani R (1999) Chem Mater 11:1672–1679

    Article  Google Scholar 

  73. Cardiano P, Sergi S, Lazzari M, Piraino P (2002) Polym 43:6635–6640

    Article  Google Scholar 

  74. Cardiano P, Mineo P, Sergi S, Ponterio RC, Triscary M, Piraino P (2003) Polym 44:4435–4441

    Article  Google Scholar 

  75. Farhaduar F, Rahimi A, Langroudi AE (2005) Iran Polym J 14(2):155–162

    Google Scholar 

  76. Ji W-G, Hu J-M, Liu L, Zhang J-Q, Cao C-N (2007) Surf Coat Tech 201:4789–4795

    Article  Google Scholar 

  77. Khamova TV, Shilova OA, Vlasov DYU, Mikhal’chuk VM, Frank-Kamenetskaya OV, Marygin AM, Dolmatov VYU (2007) Stroit Mater 4:86–88

    Google Scholar 

  78. Vlasov DYu, Marygin AM, Shilova OA, Frank-Kamenetskaya OV, Dolmatov VYu, Khamova TV, Ryabusheva YuV, Timasheva MA (2008) In: Vlasov DYu, Osipov DV (ed) Fundamental principles of innovative biological projects in the Naukograd. St-Peterbg State Univ, St-Peterbg

    Google Scholar 

  79. Shilova OA, Khamova TV, Mikhalchuk VM, Vlasov DYU, Dolmatov VYU, Frank-Kamenetskaya OV, Marugin AM (2010) Patent RU 2(382):059

    Google Scholar 

  80. Afzal A, Siddiqi M (2011) A comprehensive study of the bicontinuous epoxy-silica hybrid polymers: I. Synthesis, characterization and glass transition. Polym. Doi: 10.1016/j.polymer.2011.01.046 810

  81. Moreno EM, Levy D (2000) Chem Mater 12:2334–2340

    Article  Google Scholar 

  82. Ferrer ML, del Monte F (2005) J Phys Chem B 109:80–86

    Article  Google Scholar 

  83. Schaefer DW, Keefer KD (1984) Phys Rev Lett 53:1383–1386

    Article  Google Scholar 

  84. Matejka L, Plestil J, Dusek K (1998) J Non-Cryst Solids 226:114–121

    Article  Google Scholar 

  85. Matejka L, Dusek K, Plestil J, Kriz J, Lednicky F (1999) Polym 40:171–181

    Article  Google Scholar 

  86. Shpak AP, Shilova VV, Shilova OA, Kunitskii YuA (2004) Diagnostika nanosistem (Diagnostics of nanosystems) Pat II. Akademperiodika, Kiev

    Google Scholar 

  87. Maximov AI, Moshnikov VA, Tairov YuM, Shilova OA (2007) The basis of the sol-gel technology of nanocomposites (Osnovy zol-gel technologii nanokompozitov). Publisher Elmor, St. Petersburg

    Google Scholar 

  88. Gomza YUP, Klepko VV, Zhiltsova SV, Mikhal’chuk VM, Savenkova LA, Konstantinova TE, Beloshenko VA (2010) Polym Sci A 52:1–6

    Article  Google Scholar 

  89. Khamova TV, Kopitsa GP, Shilova OA (2012) In: Second Conference of CIS (Sol-Gel-2012). Abstracts Book, Sevastopol-Kiev

    Google Scholar 

  90. Hutlova A, Nizhansky D, Plochek JIRI, Bursik J, Reshspringer JL (2003) J Sol-Gel Sci Technol 26:473–477

    Article  Google Scholar 

  91. Kanunnikova OM, Mikhailova SS, Murav’eva AE, Goncharov OYu, Shilova OA, Bubnov YuZ (2006) Specific features of the structure of sol-gel silicate films doped with Mn and Pt. Glass Phys Chem. doi:10.1134/s1087659606020167

    Google Scholar 

  92. Srebnik S, Lev O (2003) J. Sol-Gel Sci Technol 26:107–113

    Article  Google Scholar 

  93. Edler KJ (2004) In: Sakka S (ed) Handbook of sol-gel technology: processing, characterization, and applications. Kluwer Academic Publishers, New-York

    Google Scholar 

  94. Saltykov SA (1976) Steriometrical metallography (Steriometricheskaya metallografiya). Nauka, Moscow

    Google Scholar 

  95. Appen AA (1970) Chemistry of Glasses (Khimiya Stekla). Khimiya, Leningrad

    Google Scholar 

  96. Tototzintle-Huitle H, Prokhorov E, Mendoza-Galvan A, Urbina JE, Gonzales-Hernandez J (2003) J Phys Chem Solids 64:975–980

    Article  Google Scholar 

  97. Altamirano-Juarez DC, Carrera-Figueiras C, Mendoza-Lopez ML, Ortuno-Lopez MB, Perez-Ramos ME, Ramos-Mendoza A, Rivera-Rodriguez C, Tototzintle-Huitle H, Valenzuela-Jauregi JJ, Vidales-Hurtado MA, Hemandez-Landaverde MA, Gonzales-Hernandez J (2003) J Phys Chem Solids 64:975–980

    Article  Google Scholar 

  98. Vorotilov KA, Vasilev VA, Sobolevsky MV, Afanasyeva NI (1996) Thin Solid Films 288:57–63

    Article  Google Scholar 

  99. Shilova OA, Hashkovsky SV, Tarasyuk EV, Shilov VV, Shevchenko VV, Gomza YuP, Klimenko NS (2003) J. Sol-Gel Sci Technol 26:1131–1135

    Article  Google Scholar 

  100. Khamova TV, Shilova OA, Khashkovsky SV (2006) Teck Tekhn Silik 13:17–23

    Google Scholar 

  101. Talbot E, Lardé R, Pareige Ph, Khomenkova L, Hijazi K, Gourbilleau F (2013) Nanoscale Research Letters: http://www.nanoscalereslett.com/content/8/1/39

  102. Epifani M, Capone S, Rella R, Siciliano P, Vasanelli L (2003) J Sol-Gel Sci Technol 26:741–744

    Article  Google Scholar 

  103. Hashkovskij SV, Shilova OA, Khamova TV, Efimova LN (2009) In: The Second Nanotechnology International Forum (Rusnanotech’09). Abstracts, Rusnano, Moscow

    Google Scholar 

  104. Shilova OA, Khamova TV, Tsvetkova IN, Efimova LN, Nikolajchuk NI, Hashkovsky SV, Voronkov MG, Gomza YuP, Minenko NN, Sukhoi KM, Burmistr MV (2008) In: Nanotechnology International Forum (Rusnanotech’08). Abstracts. Scientific and Technological Sections, Vol 1. Rusnano, Moscow

  105. Nechitajlov AA, Khamova TV, Zvonareva TK, Shilova OA, Astrova EV, Sreseli OM (2009) Patent RU 2(358):359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Shilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilova, O.A. Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives. J Sol-Gel Sci Technol 68, 387–410 (2013). https://doi.org/10.1007/s10971-013-3026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3026-5

Keywords

Navigation