Skip to main content
Log in

Microporous Nanocomposite Material Synthesized by Sol-Gel Processing in the Presence of Cyclodextrins

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

It is shown that the addition of precursor, tetrakis(2-hydroxyethyl) orthosilicate, that is absolutely soluble in water to a solution of cyclodextrins (CDs) leads to the formation of a hydrogel as a result of sol-gel processes. The synthesis is performed with neither a catalyst nor heating under the conditions that are inapplicable for traditionally employed precursors (tetraethoxy- and tetramethoxysilanes). The occurrence of sol-gel processes is due to the catalytic action of CDs. At the same time, their molecules act as matrix for precipitating polysilicic acids. As a result of hydrogel calcination, xerogels were prepared with micropores and microparticles dimensions of which were determined by the sizes of CD molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brinker, C.J. and Scherer, G.W., Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Boston: Academic, 1990.

    Google Scholar 

  2. Okada, K., in Encyclopedia of Surface and Colloid Science, Hubbard, A.T., Ed., New York: Marcel Dekker, 2002, p. 4292.

    Google Scholar 

  3. Pierre, A.C., Introduction to Sol-Gel Processing, Boston: Kluwer, 1998.

    Google Scholar 

  4. Pomogailo, A.D., Usp. Khim., 2000, vol. 69, p. 60.

    Google Scholar 

  5. Schuth, F. and Schmidt, W., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2002, vol. 14, p. 629.

    Article  Google Scholar 

  6. Zhao, D., Peidong, Y., Qisheng, H., et al., Curr. Opin. Solid State Mater. Sci., 1998, vol. 3, p. 111.

    CAS  Google Scholar 

  7. Patarin, J., Lebeau, B., and Zana, R., Curr. Opin. Colloid Interface Sci., 2002, vol. 7, p. 107.

    CAS  Google Scholar 

  8. Perry, C.C. and Keeling-Tucker, T., J. Biol. Inorg. Chem., 2000, vol. 5, p. 537.

    CAS  PubMed  Google Scholar 

  9. Sharp, K.G., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 1998, vol. 10, p. 1243.

    CAS  Google Scholar 

  10. Soler-Illia, G.J., Crepaldi, E.L., Grosso, D., and Sanchez, C., Curr. Opin. Colloid Interface Sci., 2003, vol. 8, p. 109.

    CAS  Google Scholar 

  11. Zaremba, C.M. and Stucky, G.D., Curr. Opin. Solid State Mater. Sci., 1996, vol. 1, p. 425.

    CAS  Google Scholar 

  12. Gill, I. and Ballesteros, A., Trends Biotechnol., 2000, vol. 18, p. 282.

    CAS  PubMed  Google Scholar 

  13. Lu, Z.-L., Lindner, E., and Mayer, H.A., Chem. Rev., 2002, vol. 102, p. 3543.

    CAS  PubMed  Google Scholar 

  14. Shchipunov, Yu.A., J. Colloid Interface Sci., 2003, vol. 268, p. 68.

    Article  CAS  PubMed  Google Scholar 

  15. Shchipunov, Yu.A. and Karpenko, T.Yu., Langmuir, 2004, vol. 20, p. 3882.

    Article  CAS  Google Scholar 

  16. Han, B.-H., Polarz, S., and Antonietti, M., Chem. Mater., 2001, vol. 13, p. 3915.

    Article  CAS  Google Scholar 

  17. Han, B.-H. and Antonietti, M., Chem. Mater., 2002, vol. 14, p. 3477.

    Article  CAS  Google Scholar 

  18. Han, B.-H., Smarsly, B., Gruber, C., and Antonietti, M., Micropor. Mesopor. Mater., 2003, vol. 66, p. 127.

    Article  CAS  Google Scholar 

  19. Wallington, S.-A., Pilon, C., and Wright, J.D., J. Sol-Gel Sci. Technol., 1997, vol. 8, p. 1127.

    Article  CAS  Google Scholar 

  20. Wallington, S.-A., Labayen, T., Poppe, A., et al., Sens. Actuators, B, 1997, vols. 38–39, p. 48.

    Google Scholar 

  21. Mehrotra, R.C. and Narain, R.P., Indian J. Chem., 1967, vol. 5, p. 444.

    CAS  Google Scholar 

  22. Shchipunov, Yu.A., Mukhaneva, O.G., Shevchenko, N.M., and Zvyagintseva, T.N., Vysokomol. Soedin., Ser. A, 2003, vol. 45, p. 295.

    Google Scholar 

  23. Shumilina, E.V. and Shchipunov, Yu.A., Kolloidn. Zh., 2002, vol. 64, p. 372.

    CAS  Google Scholar 

  24. Szeitly, J., Cyclodextrins and Their Inclusion Complexes, Budapest: Akademiai Kiado, 1982.

    Google Scholar 

  25. Goodwin, J.W. and Hughes, R.W., Rheology for Chemists. An Introduction, Cambridge: Royal Society of Chemistry, 2000, p. 320.

    Google Scholar 

  26. Ferry, J.D., Viscoelastic Properties of Polymers, New York: Wiley, 1980, p. 641.

    Google Scholar 

  27. Polarz, S., Smarsly, B., Bronstein, L., and Antonietti, M., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 4417.

    Google Scholar 

  28. Harada, A. and Kamachi, M., Macromolecules, 1990, vol. 23, p. 2821.

    Article  CAS  Google Scholar 

  29. Harada, A. and Kamachi, M., Macromolecules, 1993, vol. 26, p. 5698.

    Article  CAS  Google Scholar 

  30. Panova, I.G., Gerasimov, V.I., and Topchieva, I.N., Vysokomol. Soedin., Ser. A, 1998, vol. 40, p. 1681.

    Google Scholar 

  31. Topchieva, I.N., Tonelli, A.E., Panova, I.G., et al., Langmuir, 2004, vol. 20, p. 9036.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 421–425.

Original Russian Text Copyright © 2005 by Shchipunov, Krekoten’, Kuryavyi, Topchieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchipunov, Y.A., Krekoten’, A.V., Kuryavyi, V.G. et al. Microporous Nanocomposite Material Synthesized by Sol-Gel Processing in the Presence of Cyclodextrins. Colloid J 67, 380–384 (2005). https://doi.org/10.1007/s10595-005-0108-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10595-005-0108-2

Keywords

Navigation