Skip to main content
Log in

Molecular and genetic regulation of apomixis

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Apomixis is defined as the asexual plant reproduction through seeds that results in the production of genetically uniform progeny. In fact, apomixis could be considered as a natural way of cloning. Currently there are more than 400 plant species known to use apomixis as a strategy for their propagation. The primary fundamental aspects of apomixis are the bypassing of meiosis and parthenogenetic development of the embryo without fertilization Apomixis attracts special attention because of its potential value for agriculture, as it could be harnessed for plant breeding programs enabling the permanent fixation of heterosis in crop plants. A better understanding of the molecular and genetic regulation of apomixis is important for developmental and evolutionary perspectives but also for implementation of engineering of apomixis traits into agricultural crop plants. Despite apomixis is considered as one of the key technologies for the improving agriculture, it is currently not fully known how the genetic and molecular regulation of this important trait occurs. In this review, an up to date information on the biology of apomixis and the known genes and genetic loci associated with regulation of different components of apomixis is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nogler, G.A., Gametophytic apomixis, Embryology of Angiosperms, Johry, B.M., Ed., Berlin: Springer-Verlag, 1984, pp. 476–518.

    Google Scholar 

  2. Carman, J.G., Gametophytic angiosperm apomicts and the occurrence of polyspory and polyembryony among their relatives, Apomixis Newsletter., 1995, vol. 8, pp. 39–53.

    Google Scholar 

  3. Carman, J.G., Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony, Biol. J. Linn. Soc., 1997, vol. 61, pp. 51–94.

    Article  Google Scholar 

  4. Hojsgaard, D., Klatt, S., Baier, R., Carman, J.G., and Hörandl, E., Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics, CRC Crit. Rev. Plant Sci., 2014, vol. 33, no. 5, pp. 414–427.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Dijk, P. and Vijverberg, K., The significance of apomixis in the evolution of the angiosperms: a reappraisal, Plant Species-Level Systematics: New Perspectives on Pattern and Process, Bakker, F., Chatrou, L., Gravendeel, B., and Pelser, P., Eds., Ruggell, Liechtenstein: Gantner, 2005, pp. 101–116.

    Google Scholar 

  6. Hand, M.L., Vít, P., Krahulcová, A., Oelkers, K., Siddons, H., Chrtek, J. Jr., Fehrer, J., and Koltunow, A.M., Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations, Heredity (Edinburgh), 2015, vol. 114, no. 1, pp. 17–26.

    Article  CAS  Google Scholar 

  7. Koltunow, A.M., Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules, Plant Cell, 1993, vol. 5, pp. 1425–1437.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grossniklaus, U., Vieliecaizada, J.-P., Hoeppner, M., and Gogiiono, W., Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis, Science, 1998, vol. 280, pp. 446–450.

    Article  CAS  PubMed  Google Scholar 

  9. Grossniklaus, U., Moore, J.M., Brukhin, V., Gheyselinck, J., Baskar, R., Vielle-Calzada, J-P., Baroux, C., Page, D.R., and Spillane, C., Engineering of apomixis in crop plants: what can we learn from sexual model systems, Plant Biotechnology 2002 and Beyond, Vasil, I.K., Ed., Dordrecht: Kluwer, 2003, pp. 309–314.

    Google Scholar 

  10. Grossniklaus, U., From sexuality to apomixis: molecular and genetic approaches, The Flowering of Apomixis: from Mechanisms to Genetic Engineering, Savidan, Y., Carman, J.G., and Dresselhaus, T., Eds., Mexico, D.F.: CIMMYT, 2001, pp. 168–211.

    Google Scholar 

  11. Jefferson, R.A., Apomixis: a social revolution for agriculture? Biotechnol. Dev. Monitor., 1994, no. 19, pp. 14–16.

    Google Scholar 

  12. Toennissen, G., Feeding the world in the 21st century, The Flowering of Apomixis: from Mechanisms to Genetic Engineering, European Commission DG, 2001, vol. 6, pp. 1–7.

    Google Scholar 

  13. Savidan, Y., Apomixis: genetics and breeding, Plant Breeding Reviews, Janick, J., Ed., New York: Wiley, 2000, pp. 13–86.

    Google Scholar 

  14. Bicknell, R.A. and Koltunow, A.M., Understanding apomixis: recent advances and remaining conundrums, Plant Cell, 2004, vol. 16, suppl. 1, pp. S228–S245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koltunow, A.M. and Grossniklaus, U., Apomixis: a developmental perspective, Annu. Rev. Plant Biol., 2003, vol. 54, pp. 547–574.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez-Leal, D. and Vielle-Calzada, J.-P., Regulation of apomixis: learning from sexual experience, Curr. Opin. Plant Biol., 2012, vol. 15, no. 5, pp. 549–555.

    Article  PubMed  Google Scholar 

  17. Hand, M.L. and Koltunow, A.M., The genetic control of apomixis: asexual seed formation, Genetics, 2014, vol. 197, no. 2, pp. 441–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maheshwari, P., The angiosperm embryo sac, Bot. Rev., 1948, vol. 14, pp. 1–56.

    Article  Google Scholar 

  19. Misra, R.C., Contribution to the embryology of Arabidopsis thaliana (Gay and Monn.), Agra Univ. J. Res. Sci., 1962, vol. 11, pp. 191–199.

    Google Scholar 

  20. Poliakova, T.F., Development of the male and female gametophytes of Arabidopsis thaliana (L.) Heynh., Issled. Genet. USSR, 1964, vol. 2, pp. 125–133.

    Google Scholar 

  21. Mansfield, S.G., Briarty, L.G., and Erni, S., Early embryogenesis in Arabidopsis thaliana: 1. The mature embryo sac, Can. J. Bot., 1991, vol. 69, pp. 447–460.

    Article  Google Scholar 

  22. Webb, M.C. and Gunning, B.E.S., Embryo sac development in Arabidopsis, Sex. Plant Rep., 1990, vol. 3, pp. 244–256.

    Article  Google Scholar 

  23. Webb, M.C. and Gunning, B.E.S., Embryo sac development in Arabidopsis thaliana: 2. The cytoskeleton during megagametogenesis, Sex. Plant Reprod., 1994, vol. 7, pp. 153–163.

    Article  Google Scholar 

  24. Murgia, M., Huang, B.-Q., Tucker, S.C., and Musgrave, M.E., Embryo sac lacking antipodal cells in Arabidopsis thaliana (Brassicaceae), Am. J. Bot., 1993, vol. 80, pp. 824–838.

    Article  Google Scholar 

  25. Schneitz, K., Hulskamp, M., and Pruitt, R.E., Wildtype ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue, Plant J., 1995, vol. 7, pp. 731–749.

    Article  Google Scholar 

  26. Christensen, C.A., King, E.J., Jordan, J.R., and Drews, G.N., Megagametogenesis in Arabidopsis wild type and the Gf mutant, Sex. Plant Reprod., 1997, vol. 10, pp. 49–64.

    Article  Google Scholar 

  27. Rodkiewicz, B., Callose in cell wall during megasporogenesis in angiosperms, Planta, 1970, vol. 93, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  28. Johri, B.M., Ambegaakar, K.B., and Srinivasta, P.S., Comparative Embryology of Angiosperms, New York: Springer-Verlag, 1992, vol. 1–2.

    Book  Google Scholar 

  29. Johri, B.M., Embryology of Angiosperms, Johri, B.M., Ed., Springer Science and Business Media, 2012.

    Google Scholar 

  30. Brukhin, V., Curtis, M.D., and Grossniklaus, U., The angiosperm female gametophyte: no longer forgotten generation, Curr. Sci., 2005, vol. 89, no. 11, pp. 1844–1852.

    Google Scholar 

  31. Nawaschin, S., Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella, Bull. Acad. Imp. Sci. St. Pétersbourg, 1898, vol. 9, no. 4, pp. 377–382.

    Google Scholar 

  32. Gustafsson, A., Apomixis in angiosperms: 2. Lunds Univ. Arsskr. N.F. 2, 1947, vol. 42, pp. 71–179.

    Google Scholar 

  33. Gustafsson, A., Apomixis in angiosperms: 3. Lunds Univ. Arsskr. N.F. 2, 1947, vol. 43, pp. 183–370.

    Google Scholar 

  34. Carman, J.G., Crane, C., and Riera Lizarazu, O., Comparative histology of cell walls during meiotic and apomeiotic megasporogenesis in two hexaploid Australian Elymus species, Crop. Sci., 1991, vol. 31, pp. 1527–1532.

    Article  Google Scholar 

  35. Asker, S.E. and Jerling, L., Apomixis in Plants, Boca Raton: CRC Press, 1992.

    Google Scholar 

  36. Naumova, T.N., Apomixis in Angiosperms: Nucellar and Integumentary Embryony, Boca Raton: CRC Press, 1993.

    Google Scholar 

  37. Peacock, W.J., Genetic engineering and mutagenesis for apomixis in rice, Proceedings of International Workshop on Apomixis in Rice, Wilson, K.J., Ed., Changsha, China: CAMBIA, 1993, pp. 11–21.

    Google Scholar 

  38. Chaudhury, A.M., Craig, S., Dennis, E.S., and Peacock, W.J., Ovule and embryo development, apomixis and fertilization, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 26–31.

    Article  CAS  PubMed  Google Scholar 

  39. Spillane, C., Curtis, M.D., and Grossniklaus, U., Apomixis technology development: virgin births in farmer’s fields? Nat. Biotechnol., 2004, vol. 22, pp. 687–691.

    Article  CAS  PubMed  Google Scholar 

  40. Hörandl, E., Grossniklaus, U., van Dijk, P., and Sharbel, T., Apomixis: Evolution, Mechanisms and Perspectives, Regnum Vegetable 147, Vienna: International Association for Plant Taxonomy, 2007.

    Google Scholar 

  41. García, R., Asíns, M.J., Forner, J., and Carbonell, E.A., Genetic analysis of apomixis in Citrus and Poncirus by molecular markers, Theor. Appl. Genet., 1999, vol. 99, pp. 511–518.

    Article  PubMed  Google Scholar 

  42. Naumova, T.N. and Vielle-Calzada, J.-P., Ultrastructural analysis of apomictic development, The Flowering of Apomixis: from Mechanisms to Genetic Engineering, Savidan, Y., Carman, J.C., and Dresselhause, T., Eds., Mexico, D.F.: CIMMYT, 2001, pp. 44–63.

    Google Scholar 

  43. Leblanc, O., Grimanelli, D., González-de-León, D., and Savidan, Y., Detection of the apomictic mode of reproduction in maize–Tripsacum hybrids using maize RFLP markers, Theor. Appl. Genet., 1995, vol. 90, nos. 7–8, pp. 1198–1203.

    CAS  PubMed  Google Scholar 

  44. Naumova, T.N. and Willemse, M.T.M., Ultrastructural characterization of apospory in Panicum maximum, Sex. Plant Reprod., 1995, vol. 8, pp. 197–204.

    Article  Google Scholar 

  45. Bradly, J.E., Carman, J.G., Jamison, M.S., and Naumova, T.N., Heterochronic features of the female germline among several sexual diploid Tripsacum (Andropogonaceae, Poaceae), Sex. Plant. Reprod., 2007, vol. 20, no. 1, pp. 9–17.

    Article  CAS  Google Scholar 

  46. Rutishauser, A., Embryologie und Fortpflanzungsbiologie der Angiospermen, Berlin: Springer-Verlag, 1969, pp. 104–121.

    Book  Google Scholar 

  47. Naumova, T.N., van der Laak, J., Osadtchiy, J., Matzk, F., Kravtchenko, A., Bergervoet, J., Ramulu, K.S., and Boutilier, K., Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae), Sex. Plant Reprod., 2001, vol. 14, no. 4, pp. 195–200.

    Article  CAS  PubMed  Google Scholar 

  48. Naumova, T.N., Apomixis and amphimixis in flowering plants, Cytol. Genet., 2008, vol. 3, pp. 51–63.

    Google Scholar 

  49. Kojima, A. and Nagato, J., Diplosporous embryo sac formation and the degree of diplospory in Allium tuberosum, Sex. Plant Reprod., 1992, vol. 5, no. 1, pp. 72–78.

    Article  Google Scholar 

  50. Naumova, T.N., Apomixis in tropical fodder crops: cytological and functional aspects, Euphytica, 1997, vol. 96, pp. 93–99.

    Article  Google Scholar 

  51. Curtis, M.D. and Grossniklaus, U., Molecular control of autonomous embryo and endosperm development, Sex. Plant Reprod., 2008, vol. 21, pp. 79–88.

    Article  Google Scholar 

  52. Nogler, G.A., The lesser-known Mendel: his experiments on Hieracium, Genetics, 2006, vol. 172, pp. 1–6.

    PubMed  PubMed Central  Google Scholar 

  53. Brukhin, V., Jaciubek, M., Bolaños Carpio, A., Kuzmina, V., and Grossniklaus, U., Female gametophytic mutants of Arabidopsis thaliana identified in a gene trap insertional mutagenesis screen, Int. J. Dev. Biol., 2011, vol. 55, pp. 73–84.

    Article  CAS  PubMed  Google Scholar 

  54. Kerk, N.M., Ceserani, T., Tausta, S.L., Sussex, I.M., and Nelson, T.M., Laser capture microdissection of cells from plant tissues, Plant Physiol., 2003, vol. 132, pp. 27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Day, R.C., Grossniklaus, U., Macknight, R.C., Be more specific! Laser-assisted microdissection of plant cells, Trends Plant Sci., 2005, vol. 10, pp. 397–440.

    Article  CAS  PubMed  Google Scholar 

  56. Johnston, A.J., Meier, P., Gheyselinck, J., Wuest, S.E., Federer, M., Schlagenhauf, E., Becker, J.D., and Grossniklaus, U., Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte, Genome Biol., 2007, vol. 8, no. 10, p. 204.

    Article  CAS  Google Scholar 

  57. Wuest, S.E., Vijverberg, K., Schmidt, A., Weiss, M., Gheyselinck, J., Lohr, M., Wellmer, F., Rahnenführer, J., von Mering, C., and Grossniklaus, U., Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes, Curr. Biol., 2010, vol. 20, no. 6, pp. 506–512.

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt, M.W., Schmidt, A., Klostermeier, U.C., Barann, M., Rosenstiel, P., and Grossniklaus, U., A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing, PLoS One, 2012, vol. 7, no. 1, e29685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Florez Rueda, A.M., Grossniklaus, U., and Schmidt, A., Laser-assisted Microdissection (LAM) as a tool for transcriptional profiling of individual cell types, J. Vis. Exp., 2016, vol. 10, p. 111.

    Google Scholar 

  60. Rabiger, D.S., Taylor, J.M., Spriggs, A., Hand, M.L., Henderson, S.T., Johnson, S.D., Oelkers, K., Hrmova, M., Saito, K., Suzuki, G., Mukai, U., Carroll, B.J., and Koltunow, A.M.G., Generation of an integrated Hieracium genomic and transcriptomic resource enables exploration of small RNA pathways during apomixis initiation, BMC Biol., 2016, vol. 14, p. 86.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schranz, M.E., Dobes, C., Koch, M.A., and Mitchell-Olds, T., Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae), Am. J. Bot., 2005, vol. 92, pp. 1797–1810.

    Article  CAS  PubMed  Google Scholar 

  62. Aliyu, O.M., Schranz, M.E., and Sharbel, T.F., Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae), Am. J. Bot., 2010, vol. 97, p. 1719.

    Article  PubMed  Google Scholar 

  63. Sharbel, T.F. and Mitchell-Olds, T., Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae), Heredity, 2001, vol. 87, p. 59.

    Article  CAS  PubMed  Google Scholar 

  64. Kantama, L., Sharbel, T.F., Schranz, M.E., Mitchell-Olds, T., De Vries, S., and Oe Jong, H., Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, p. 14026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vogel, H., Kroymann, J., and Mitchell-Olds, T., Different transcript patterns in response to specialist and generalist herbivores in the wild Arabidopsis relative Boechera divaricarpa, PLoS One, 2007, vol. 2, no. 10. e1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Schneitz, K., Hülskamp, M., Kopczak, S.D., and Pruitt, R.E., Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana, Development, 1997, vol. 124, pp. 1367–1376.

    CAS  PubMed  Google Scholar 

  67. Sheridan, W.F., Avalkina, N.A., Shamrov, I.I., Batygina, T.V., and Golubovskaya, I.N., The mac1 gene: controlling the commitment to the meiotic pathway in maize, Genetics, 1996, vol. 142, no. 3, pp. 1009–1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sheridan, W.F., Golubeva, E.A., Abrhamova, L.I., and Golubovskaya, I.N., The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther, Genetics, 1999, vol. 153, no. 2, pp. 933–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kassir, Y., Granot, D., and Simchen, D., IME1, a positive regulator gene of meiosis in S. cerevisiae, Cell, 1988, vol. 52, pp. 853–862.

    Article  CAS  PubMed  Google Scholar 

  70. Kawaguchi, H., Yoshida, M., and Yamashita, I., Nutritional regulation of meiosis specific gene expression in Saccharomyces cerevisiae, Biotech. Biochem., 1992, vol. 56, pp. 289–297.

    Article  CAS  Google Scholar 

  71. Bowdish, K.S., Yuan, H.E., and Mitchel, A.P., Analysis of RIM11, a yeast protein kinase that phosphorylates the meiotic activator IMEI, Mol. CeIl. Biol., 1994, vol. 14, pp. 7909–7919.

    Article  CAS  Google Scholar 

  72. Jefferson, R.A. and Nugroho, S. Molecular strategies for hybrid rice: male sterility and apomixis, Proceedings of the 3rd International Symposium on Hybrid Rice, Hardy, B., Ed., Manila, 1998.

    Google Scholar 

  73. Palmer, R.G., Cytological studies of ameiotic and normal maize with reference to premeiotic pairing, Chromosoma, 1971, vol. 35, pp. 233–246.

    Article  Google Scholar 

  74. Goiubovskaya, I.N., Avalkina, N.A., and Sheridan, W.F., Effect of several meiotic mutants on female meiosis in maize, Dev. Genet., 1992, vol. 13, pp. 411–424.

    Article  Google Scholar 

  75. Golubovskaya, I., Grebennikova, Z.K., Avalkina, N.A., and Sheridan, W.F., The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize, Genetics, 1993, vol. 135, no. 4, pp. 1151–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Golubovskaya, I., Avalkina, N., and Sheridan, W.F., New insights into the role of the maize ameiotic1 locus, Genetics, 1997, vol. 147, no. 3, pp. 1339–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mercier, R., Vezon, D., Bullier, E., Motamayor, J.C., Sellier, A., Lefevre, F., Pelletier, G., and Horlow, C., SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis, Genes Dev., 2001, vol. 15, no. 14, pp. 1859–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sezer, F., Yüzbaşioğlu, G., Özbilen, A., and Taşkin, K.M., Genome-wide identification and expression analysis of SWI1 genes in Boechera species, Comp. Biol. Chem., 2016, vol. 62, pp. 75–81.

    Article  CAS  Google Scholar 

  79. Goiubovskaya, I.N., Genetic control of meiosis, Int. Rev. Cytol., 1979, vol. 58, pp. 247–290.

    Article  Google Scholar 

  80. Barrell, P.J. and Grossniklaus, U., Confocal microscopy of whole ovules for analysis of reproductive development: the elongate1 mutant affects meiosis II, Plant J., 2005, vol. 43, pp. 309–320.

    Article  CAS  PubMed  Google Scholar 

  81. Finch, R.A. and Bennett, M.D., Action of triploid inducer (tri) on meiosis in barley (Hordeum vulgare L.), Heredity, 1979, vol. 43, pp. 87–93.

    Article  Google Scholar 

  82. Siddiqi, I., Ganesh, G., Grossniklaus, U., and Subbiah, V., The dyad gene is required for progression through female meiosis in Arabidopsis, Development, 2000, vol. 127, no. 1, pp. 197–207.

    CAS  PubMed  Google Scholar 

  83. Ravi, M., Marimuthu, M.P.A., and Siddiqi, I., Gamete formation without meiosis in Arabidopsis, Nature, 2008, vol. 451, pp. 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  84. Kobayashi, T., Kobayashi, E., Sato, S., Hotta, U., Miyajima, N., Tanaka, A., and Tabata, S., Characterization of cDNAs induced in meiotic prophase in lily microsporocytes, DNA Res., 1994, vol. 1, no. 1, pp. 15–26.

    Article  CAS  PubMed  Google Scholar 

  85. Klimyuk, V.I. and Jones, J.D. AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression, Plant J., 1994, vol. 11, no. 1, pp. 1–14.

    Article  Google Scholar 

  86. Zhao, L., He, J., Cai, H., Lin, H., Li, Y., Liu, R., Yang, Z., and Qin, Y., Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis, Plant J., 2014, vol. 80, no. 4, pp. 615–628.

    Article  CAS  PubMed  Google Scholar 

  87. Pradillo, M., Varas, J., Oliver, C., and Santos, J.L., On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis, Front. Plant Sci., 2014, vol. 5, p. 23.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pradillo, M., López, E., Linacero, R., Romero, C., Cufiado, N., Sanchez-Moran, E., and Santos, J.L., Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination, Plant J., 2012, vol. 69, no. 6, pp. 921–933.

    Article  CAS  PubMed  Google Scholar 

  89. Albertini, E., Marconi, G., Barcaccia, G., Raggi, L., and Falcinelli, M., Isolation of candidate genes for apomixis in Poa pratensis L., Plant Mol. Biol., 2004, vol. 56, pp. 879–894.

    Article  CAS  PubMed  Google Scholar 

  90. Albertini, E., Marconi, G., Reale, L., Barcaccia, G., Porceddu, A., et al., SERK and APOSTART: candidate genes for apomixis in Poa pratensis, Plant Physiol., 2005, vol. 138, pp. 2185–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Podio, M., Felitti, S.A., Siena, L.A., Delgado, L., Mancini, M., Seijo, J.G., González, A.M., Pessino, S.C., and Ortiz, J.P., Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum, Plant Mol. Biol., 2014, vol. 84, no. 4–5, pp. 479–495.

    Article  CAS  PubMed  Google Scholar 

  92. Barcaccia, G. and Albertini, E., Apomixis in plant reproduction: a novel perspective on an old dilemma, Plant Reprod., 2013, vol. 26, pp. 159–179.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cromer, L., Heyman, J., Touati, S., Harashima, H., Araou, E., Girard, C., Horlow, C., Wassmann, K., Schnittger, A., and De Veylder, L., OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM, PLoS Genet., 2012, vol. 8, no. 7. e1002865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. D’Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., et al., Turning meiosis into mitosis, PLoS Biol., 2009, vol. 7, e1000124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Marimuthu, M.P.A., Jolivet, S., Ravi, M., Pereira, L., Davda, J.N., et al., Synthetic clonal reproduction through seeds, Science, 2011, vol. 331, p. 876.

    Article  CAS  PubMed  Google Scholar 

  96. Ravi, M. and Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination, Nature, 2010, vol. 464, pp. 615–618.

    Article  CAS  PubMed  Google Scholar 

  97. Silveira, E.D., Guimarães, L.A., De Dusi, D.M.A., Da Silva, F. R., Martins, N.F., et al., Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomictic plants, Plant Cell Rep., 2012, vol. 31, pp. 403–416.

    Article  CAS  PubMed  Google Scholar 

  98. Guimarães, L., Dusi, D.A., Masiero, S., Resentini, F., Gomes, A.M., et al., BbrizAGL6 is differentially expressed during embryo sac formation of apomictic and sexual Brachiaria brizantha plants, Plant Mol. Biol. Rep., 2013, vol. 31, no. 6. doi doi 10.1007/s11105–013–0618–8

    Google Scholar 

  99. Okada, T., Hu, Y., Tucker, M.R., Johnson, S.D., Spriggs, A., Tsuchiya, T., Oelkers, K., Rodrigues, J.C., and Koltunow, A.M., Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis, Plant Physiol., 2013, vol. 163, pp. 216–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Olmedo-Monfil, V., Durán-Figueroa, N., Arteaga-Vázquez, M., Demesa-Arévalo, E., Autran, O., et al., Control of female gamete formation by a small RNA pathway in Arabidopsis, Nature, 2010, vol. 464, pp. 628–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Singh, M., Goel, S., Meeley, R.B., Dantec, C., Parrinello, H., et al., Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein, Plant Cell, 2011, vol. 23, pp. 443–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meister, G., Argonaute proteins: functional insights and emerging roles, Nat. Rev. Genet., 2013, vol. 14, pp. 447–459.

    Article  CAS  PubMed  Google Scholar 

  103. Nonomura, K.I., Morohoshi, A., Nakano, M., Eiguchi, M., Miyao, A., et al., A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice, Plant Cell, 2007, vol. 19, pp. 2583–2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Redei, G.P., Non-Mendelian megagametogenesis in Arabidopsis, Genetics, 1965, vol. 51, pp. 857–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Feldmann, U., Coury, D., and Christianson, M.L., Exceptional segregation of a selectable marker (KanR) identifies genes important for gamelaphylic growth and development, Genetics, 1997, vol. 147, pp. 1411–1422.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Christensen, C.A., Subramanian, S., and Drews, G.N., Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis, Dev. Biol., 1998, vol. 202, no. 1, pp. 136–151.

    Article  CAS  PubMed  Google Scholar 

  107. Springer, P.S., McCombie, W.R., Sundaresan, V., and Martinssen, R.A., Gene trap tagging of prolifera, an essential Mcm2-3-5-Like gene in Arabidopsis, Science, 1995, vol. 268, pp. 877–880.

    Article  CAS  PubMed  Google Scholar 

  108. Holding, D.R. and Springer, P.S., The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development, Planta, 2002, vol. 214, no. 3, pp. 373–382.

    Article  CAS  PubMed  Google Scholar 

  109. Kermicle, J.L., Indeterminate gametophyte (ig): biology and use, The Maize Handbook, Freeling, M. and Walbot, V., Eds., New York: Springer-Verlag, 1994, pp. 388–393.

    Google Scholar 

  110. Evans, M.S., The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development, Plant Cell, 2007, vol. 19, no. 1, pp. 46–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shi, D.-Q., Liu, J., Xiang, Y.-H., Ye, D., Sundaresan, V., and Yang, W.C., SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis, Plant Cell, 2005, vol. 17, pp. 2340–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hejátko, J., Pernisova, M., Eneva, T., Palme, K., and Brzobohaty, B., The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis, Mol. Genet. Genomics, 2003, vol. 269, pp. 443–453.

    Article  PubMed  CAS  Google Scholar 

  113. Deng, Y., Dong, H., Mu, J., Ren, B., Zheng, B., Ji, Z., Yang, W.C., Liang, Y., and Zuo, J., Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth, Plant Cell, 2010, vol. 22, no. 4, pp. 1232–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., and Roig-Villanova, I., et al., Maternal control of PIN1 is required for female gametophyte development in Arabidopsis, PLoS One, 2013, vol. 8, e66148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kwee, H.S. and Sundaresan, V., The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis, Plant J., 2003, vol. 36, no. 6, pp. 853–866.

    Article  CAS  PubMed  Google Scholar 

  116. Ebel, C., Mariconti, L., and Gruissem, W., Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte, Nature, 2004, vol. 429, pp. 777–780.

    Article  CAS  Google Scholar 

  117. Jullien, P.E., Mosquna, A., Ingouff, M., Sakata, T., Ohad, N., and Berger, F., Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis., PLoS Biol., 2008, vol. 6, no. 8. e194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Garcia-Aguilar, M., Michaud, C., Leblanc, O., and Grimanelli, D., Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes, Plant Cell, 2010, vol. 22, pp. 3249–3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Steinhardt, R.A. and Eppel, D., Activation of sea urchin eggs by a calcium ionophore, Proc. Natl. Acad. Sci. U.S.A., 1974, vol. 71, pp. 1915–1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Uranga, J.A., Pedersen, R.A., and Arechago, J., Parthenogenetic activation of mouse oocytes using calcium ionophores and protein kinase C stimulators, Int. J. Dev. Biol., 1996, vol. 40, pp. 515–519.

    CAS  PubMed  Google Scholar 

  121. Hagberg, A. and Hagberg, G., High frequency of spontaneous haploids in the progeny of an induced mutation barley, Hereditas, 1980, vol. 93, pp. 341–343.

    Article  Google Scholar 

  122. Asker, S.E., Hagberg, A., and Hagberg, G., Apomixis in barley? Sver. Utsodesforen. Tidskr., 1983, vol. 93, pp. 75–76.

    Google Scholar 

  123. Matzk, F., The Salmon system of wheat: a suitable model for apomixis research, Hereditas, 1996, vol. 125, pp. 299–301.

    Article  Google Scholar 

  124. Matzk, F., Meyer, H.M., Horstmann, C., Balzer, H.J., Baumlein, H., and Schubert, I.A., A specific alphatubulin is associated with the initiation of parthenogenesis in “Salmon” wheat lines, Hereditas, 1997, vol. 126, no. 3, pp. 219–224.

    Article  CAS  PubMed  Google Scholar 

  125. Matzk, F., Prodanovic, S., Bäumlein, H., and Schubert, I., The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance, Plant Cell, 2005, vol. 17, no. 1, pp. 13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Liu, C.M., van Lammeren, A.A., Miki, B.L., Custers, J.B., and van Lookeren Campagne, M.M., Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth, Plant Cell, 2002, vol. 14, no. 8, pp. 1737–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Conner, J.A., Goel, S., Gunawan, G., Cordonnier-Pratt, M.M., Johnson, V.E., et al., Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus, Plant Physiol., 2008, vol. 147, pp. 1396–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gaj, M.D., Zhang, S., Harada, J.J., and Lemaux, P.G., Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis, Planta, 2005, vol. 222, no. 6, pp. 977–988.

    Article  CAS  PubMed  Google Scholar 

  129. Wang, F. and Perry, S.E., Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development, Plant Physiol., 2013, vol. 161, no. 3, pp. 1251–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U., and Gruissem, W., Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development, EMBO J., 2003, vol. 22, no. 18, pp. 4804–4814.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Guitton, A.E. and Berger, F., Loss of function of MULTICOPY SUPPRESSOR OF IRA1 produces non-viable parthenogenetic embryos in Arabidopsis, Curr. Biol., 2005, vol. 15, no. 8, pp. 750–754.

    Article  CAS  PubMed  Google Scholar 

  132. Birchler, J.A., Dosage analysis of maize endosperm development, Annu. Rev. Genet., 1993, vol. 27, pp. 181–204.

    Article  CAS  PubMed  Google Scholar 

  133. Scott, R.J., Spielman, M., Bailey, J., and Dickinson, H.G., Parent-of-origin effect in seed development in Arabidopsis thaliana, Development, 1998, vol. 125, pp. 3329–3341.

    CAS  PubMed  Google Scholar 

  134. Sargant, E., Recent work on the results of fertilization angiosperms, Ann. Bot., 1900, vol. 14, pp. 689–712.

    Article  Google Scholar 

  135. Schmidt, A., Wöhrmann, H.J.P., Raissig, M.T., Arand, J., Gheyselinck, J., et al., The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis, Plant J., 2013, vol. 73, pp. 776–787.

    Article  CAS  PubMed  Google Scholar 

  136. Ohad, N., Yadegari, R., Margossian, L., Hannon, M., and Michaeli, D., et al., Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization, Plant Cell, 1999, vol. 11, no. 3, pp. 407–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chaudhury, A.M., Ming, L., Miller, C., Craig, S., Dennis, E.S., et al., Fertilization-independent seed development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 4223–4228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Luo, M., Bilodeau, P., Koltunow, A., Dennis, E.S., Peacock, W.J., and Chaudhury, A.M., Genes controlling fertilization-independent seed development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 1, pp. 296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and Fischer, R.L., DEMETER, a DNA glycosylase domain protein, is required for endosperm imprinting and seed viability in Arabidopsis, Cell, 2002, vol. 110, pp. 33–42.

    Article  CAS  PubMed  Google Scholar 

  140. Ngo, Q.A., Moore, J.M., Baskar, R., Grossniklaus, U., and Sundaresan, V., Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles, Development, 2007, vol. 134, no. 22, pp. 4107–4117.

    Article  CAS  PubMed  Google Scholar 

  141. Worthington, M., Heffelfinger, C., Bernal, D., Quintero, C., Zapata, V.P., Perez, J.G., De Vega, J., Miles, J., Dellaporta, S., and Tohme, J., A parthenogenesis gene candidate and evidence for segmental allopolyploidy in apomictic Brachiaria decumbens, Genetics, 2016, vol. 203, no. 3, pp. 1117–1132.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ozias-Akins, P., Roche, D., and Hanna, W.W., Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 5127–5132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pessino, S.C., Evans, C., Ortiz, J.P.A., Armstead, I., Do Valle, C.B., and Hayward, M.D., A genetic map of the apospory region in Brachiaria hybrids: identification of two markers closely associated with the trait, Hereditas, 1998, vol. 128, pp. 153–158.

    Article  Google Scholar 

  144. Grimanelli, D., Leblanc, O., Espinosa, E., Perotti, E., Gonzalez De Leon, O., and Savidan, V., Mapping diplo-sporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity, 1998, vol. 80, pp. 33–39.

    Article  PubMed  Google Scholar 

  145. Noyes, R.D. and Rieseberg, L.H., Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus, Genetics, 2000, vol. 155, pp. 379–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pupilli, F., Labombarda, P., Caceres, M.E., Quarin, Q.L., and Arcioni, S., The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12, Mol. Breed., 2001, vol. 8, no. 1, pp. 53–61.

    Article  CAS  Google Scholar 

  147. van Dijk, P.J., Tas, I.C.Q., Falque, M., and Bakx-Schotman, T., Crosses between sexual and apomictic dandelions (Taraxacum): 2. The breakdown of apomixis, Heredity, 1999, vol. 83, pp. 715–721.

    Article  PubMed  Google Scholar 

  148. Albertini, E., Porceddu, A., Ferranti, F., Reale, L., Barcaccia, G., et al., Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation, Sex. Plant Reprod., 2001, vol. 14, pp. 213–217.

    Article  CAS  PubMed  Google Scholar 

  149. Schallau, A., Arzenton, F., Johnston, A.J., Hahnel, U., Koszegi, D., et al., Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L., Plant J., 2010, vol. 62, pp. 773–784.

    Article  CAS  PubMed  Google Scholar 

  150. Conner, J.A., Gunawan, G., and Ozias-Akins, P., Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris, Planta, 2013, vol. 238, pp. 51–63.

    Article  CAS  PubMed  Google Scholar 

  151. Catanach, A.S., Erasmuson, S.K., Podivinsky, E., Jordan, B.R., and Bicknell, R., Deletion mapping of genetic regions associated with apomixis in Hieracium, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 18650–18655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Koltunow, A.M.G., Johnson, S.D., Rodrigues, J.C.M., Okada, T., Hu, Y., et al., Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis, Plant J., 2011, vol. 66, pp. 890–902.

    Article  CAS  PubMed  Google Scholar 

  153. Shirasawa, K., Hand, M.L., Henderson, S.T., Okada, T., Johnson, S.D., Taylor, J.M., Spriggs, A., Siddons, H., Hirakawa, H., Isobe, S., Tabata, S., and Koltunow, A.M., A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts., Ann. Bot., 2015, vol. 115, no. 4, pp. 567–580.

    Article  PubMed  Google Scholar 

  154. Koltunow, A.M., Ozias-Akins, P., and Siddiqi, I., Apomixis, Seed Genomics, Becraft, P.W., Ed., New York: Wiley, 2013, pp. 83–110.

    Book  Google Scholar 

  155. Ogawa, D., Johnson, S.D., Henderson, S.T., and Koltunow, A.M., Genetic separation of autonomous endosperm formation (AutE) from two other components of apomixis in Hieracium, Plant Reprod., 2013, vol. 26, pp. 113–123.

    Article  PubMed  Google Scholar 

  156. Calderini, O., Chang, S.B., De Jong, H., Busti, A., Paolocci, F., et al., Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice, Theor. Appl. Genet., 2006, vol. 112, pp. 1179–1191.

    Article  CAS  PubMed  Google Scholar 

  157. Akiyama, Y., Hanna, W.W., and Ozias-akins, P., High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome, Theor. Appl. Genet., 2005, vol. 111, pp. 1042–1051.

    Article  CAS  PubMed  Google Scholar 

  158. Corral, J.M., Vogel, H., Aliyu, O.M., Hensel, G., Thiel, T., Kumlehn, J., and Sharbel, T.F., A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic Boechera species, Plant Physiol., 2013, vol. 163, no. 4, pp. 1660–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Santos, M.O. and Aragão, F.J.L., Role of SERK genes in plant environmental response, Plant Signal Behav., 2009, vol. 4, no. 12, pp. 1111–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kotani, Y., Henderson, S.T., Suzuki, G., Johnson, S.D., Okada, T., Siddons, H., Mukai, Y., and Koltunow, A.M., The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure, New Phytol., 2014, vol. 201, no. 3, pp. 973–981.

    Article  CAS  PubMed  Google Scholar 

  161. Nelson, O.E. and Glary, G.B., Genic: control of semi-sterilely in maize, J. Hered., 1952, vol. 43, pp. 205–210.

    Article  Google Scholar 

  162. Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S., Capron, A., Xie, L.F., Ye, O., and Sundaresan, V., Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis, Development, 2005, vol. 132, pp. 603–614.

    Article  CAS  PubMed  Google Scholar 

  163. Drews, G.N., Lee, D., and Christensen, C.A., Genetic analysis of female gametophyte development and function, Plant Cell, 1998, vol. 10, pp. 5–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lotan, T., Ohto, M., Yee, K.M., West, M.A., LO R., Kwong, R.W, Yamagishi, K., Fischer, R.L., Goldberg, R.B., and Harada, J.J., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells, Cell, 1998, vol. 93, no. 7, pp. 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  165. Parcy, F., Valon, C., Kohara, A., Misér, A.S., and Giraudat, J., The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development, Plant Cell, 1997, vol. 9, no. 8, pp. 1265–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tsuchiya, Y., Nambara, E., Naito, S., and Mccourt, P., The FUS3 transcription factor functions through the epidermal regulator TTG1 during embryogenesis in Arabidopsis, Plant J., 2004, vol. 37, no. 1, pp. 73–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Brukhin.

Additional information

Published in Russian in Genetika, 2017, Vol. 53, No. 9, pp. 1001–1024.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brukhin, V. Molecular and genetic regulation of apomixis. Russ J Genet 53, 943–964 (2017). https://doi.org/10.1134/S1022795417090046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417090046

Keywords

Navigation