Skip to main content
Log in

Probe measurements of the electron distribution function in an electron-beam-produced ytterbium plasma

  • Plasma Kinetics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A nonequilibrium anisotropic plasma produced by an electron beam in the residual air with a low content of ytterbium vapor was investigated by the probe method. It is found that a minor (at a level of a few ppm) admixture of ytterbium to low-pressure air substantially modifies the electron energy distribution function (EEDF): the main peak corresponding to thermal electrons broadens, and new peaks appear. It is shown that the observed change in the EEDF is caused by the low ionization energy of ytterbium, due to which one beam electron can ionize several ytterbium atoms. The new peaks in the EEDF correspond to the final energies of a beam electron after each subsequent ionizing collision with ytterbium atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Derzhiev, V. A. Kuznetsov, L. A. Mikhal’tsov, et al., Kvant. Elektron. 23, 771 (1996) [Quant. Electron. 26, 751 (1996)].

    Google Scholar 

  2. S. I. Yakovlenko, Kvant. Elektron. 25, 971 (1998) [Quant. Electron. 28, 945 (1998)].

    Google Scholar 

  3. A. E. Dubinov, I. Yu. Kornilova, and V. D. Selemir, Fiz. Elem. Chast. At. Yadra 32, 828 (2001).

    Google Scholar 

  4. D. A. Dolgolenko and Yu. A. Muromkin, Usp. Fiz. Nauk 179, 369 (2009) [Phys. Usp. 52, 345 (2009)].

    Article  Google Scholar 

  5. E. I. Skibenko, Vopr. At. Nauki Tekh., Ser. Vakuum Chistye Mater. Sverkhprovod., No. 6, 67 (2009).

  6. R. L. Merlino, Am. J. Phys. 75, 1078 (2007).

    Article  ADS  Google Scholar 

  7. M. J. Druyvesteyn, Z. Phys. 64, 781 (1930).

    Article  ADS  Google Scholar 

  8. V. L. Fedorov, Zh. Tekh. Fiz. 55, 926 (1985) [Sov. Phys. Tech. Phys. 30, 554 (1985)].

    Google Scholar 

  9. M. A. Mal’kov, Fiz. Plazmy 17, 837 (1991) [Sov. J. Plasma Phys. 17, 489 (1991)].

    Google Scholar 

  10. A. P. Mezentsev, A. S. Mustafaev, V. F. Lapshin, and V. L. Fedorov, J. Phys. B 20, L723 (1987).

    Article  ADS  Google Scholar 

  11. S. Klagge and A. Lunk, J. Appl. Phys. 70, 99 (1991).

    Article  ADS  Google Scholar 

  12. S. Klagge, Plasma Chem. Plasma Proc. 12, 103 (1992).

    Article  Google Scholar 

  13. A. S. Mustafaev, I. B. Movchan, and A. P. Mezentsev, Zh. Tekh. Fiz. 70(11), 24 (2000) [Tech. Phys. 45, 1399 (2000)].

    Google Scholar 

  14. V. I. Demidov, S. V. Ratynskaia, and K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002).

    Article  ADS  Google Scholar 

  15. Atmosphere (Handbook), Ed. by Yu. S. Sedunov (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  16. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Bobrova, A.E. Dubinov, M.I. Esin, S.V. Zolotov, A.N. Maksimov, V.D. Selemir, I.I. Sidorov, A.Yu. Shubin, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 1, pp. 88–92.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrova, A.A., Dubinov, A.E., Esin, M.I. et al. Probe measurements of the electron distribution function in an electron-beam-produced ytterbium plasma. Plasma Phys. Rep. 37, 82–86 (2011). https://doi.org/10.1134/S1063780X10121013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10121013

Keywords

Navigation