Skip to main content

Basic Concepts of Plasma Generation

  • Reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

As described in Part I of this book dealing with fundamental concepts of the plasma state, passing an electric current through a gas gives rise to the formation of plasmas. Since gases at room temperature are excellent insulators, a sufficient number of charge carriers must be generated to make the gas electrically conducting. This process is known as electrical breakdown, and there are a number of ways by which this may be accomplished. The application of a strong electric field between a pair of electrodes can lead to a breakdown of the originally nonconducting gas leading to the establishment of a conducting path. The passage of the electrical current through the gap between the electrodes leads in turn to an array of phenomena known as gaseous discharges. These are the most common, but not the only means for producing a plasma. For certain applications, plasmas are produced by electrode-less radio frequency (RF), capacitive or inductively coupled discharges, microwaves, shock waves, lasers, or high-energy particle beams. Finally, heating gases (vapors) in a high-temperature furnace may also lead to the generation of plasma. Because of inherent temperature limitations, this method is restricted to metal vapors with low ionization potentials.

Emil Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

CVD:

Chemical vapor deposition

DC:

Direct current

MW:

Microwave

mfp:

mean free path

RF:

Radio frequency

TWD:

Traveling wave discharge

UV:

Ultra violet

References

  • Boulos MI (1997) The inductively coupled radio-frequency plasma. J High Temp Mater Process 1:17–39

    Article  Google Scholar 

  • Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum Press, New York

    Book  Google Scholar 

  • Brown SC (1956) Breakdown in gases: alternating and high-frequency fields. In: Flügge S (ed) Encyclopedia of physics. Gas discharges II, vol XXII. Springer, Berlin

    Google Scholar 

  • Brown SC Jr (1959) Basic data of plasma physics. Wiley, New York

    Google Scholar 

  • Brown SC (1966) Introduction to electrical discharges in gases. Wiley, New York

    Google Scholar 

  • Chanin LM (1971) Fundamental concepts of plasma chemistry, In: Chapter 2, Glow discharges, continuing education course. University of Minnesota, St Paul MN

    Google Scholar 

  • Cobine JD (1958) Gaseous conductors. Dover, New York

    MATH  Google Scholar 

  • Eckert HU (1974) The induction arc: a state-of-the-art review. High Temp 6:99–134

    Google Scholar 

  • Finkelnburg W, Maecker H (1956) Electric arcs and thermal plasmas. In: Flügge S (ed) Encyclopedia of physics. Gas discharges II, vol XXII. Springer, Berlin

    Google Scholar 

  • Flügge S (ed) (1956a) Encyclopedia of physics. Gas discharges I, vol XXII. Springer, Berlin

    Google Scholar 

  • Flügge S (ed) (1956b) Encyclopedia of physics. Gas discharges II, vol XXII. Springer, Berlin

    Google Scholar 

  • Francis G (1956) The glow discharge at low pressures. In: Flügge S (ed) Encyclopedia of physics. Gas discharges II, vol XXII. Springer, Berlin

    Google Scholar 

  • Freeman MP, Chase JD (1968) Energy-transfer mechanism and typical operating characteristics for the thermal RF plasma generator. J Appl Phys 39:180–190

    Article  Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fridman A, Kennedy LA (2004) Plasma physics and engineering. Taylor & Francis, New York

    Book  Google Scholar 

  • Fulcheri L, Fabry F, Takali S, Rohani V (2015) Three-phase AC arc plasma systems: a review. J Plasma Chem Plasma Process 35:565–585

    Article  Google Scholar 

  • Goldman M, Goldman A (1978) Gaseous electronics. In: Hirsh MN, Oskam HJ (eds), Chapter 4, Corona discharges, pp 219–290. Science Direct Elsevier Inc

    Google Scholar 

  • Hirsh MN, Oskam HJ (1978) Gaseous electronics. Electrical discharges, vol 1. Academic, New York

    Google Scholar 

  • Knoll M, Ollendorff F, Rompe R (1935) Gasentladungstabellen. Springer, Berlin, p 79

    Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications, invited review. Plasma Chem Plasma Process 23(1):1–46

    Article  Google Scholar 

  • Lebedev YA (2010) Microwave discharges: generation and diagnostics. J Phys Conf Ser 257:012016

    Article  Google Scholar 

  • Llewellyn-Jones F (1967) Ionization avalanches and breakdown. Methuen, London

    Google Scholar 

  • Loeb LB (1955) Basic processes of gaseous electronics, 2nd edn. University of California Press, Berkeley

    Book  MATH  Google Scholar 

  • Loeb LB (1965) Electrical coronas. University of California Press, Berkeley

    Book  Google Scholar 

  • Lowke JJ, Morrow R (1994) Theory of electric corona including the role of plasma chemistry. Pure Appl Chem 66(6):1287–1994

    Google Scholar 

  • McDonald AD, Tetenbaum SJ (1978) Gaseous electronics, Chapter 3. In: Hirsh MN, Oskam HJ (eds) High frequency and microwave discharges, vol 1. Academic, New York

    Google Scholar 

  • Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  • Moisan M, Zakrzewski Z (1991) Plasma sources based in the propagation of electromagnetic surface waves. J Phys D Appl Phys 24:1025–1048

    Article  Google Scholar 

  • Pfender E (1953) Beitrag zum quantitativen Verlauf der Entladungsgenetik. Z Angew Phys 5:450

    Google Scholar 

  • Pfender E (1978) Electric arcs and arc gas heaters, Chapter 5. In: Hirsh MH, Oskam HJ (eds) Gaseous electronics, vol 1. Academic, New York

    Google Scholar 

  • Raether H (1964) Electron avalanches and breakdown in gases. Butherworths, Washington

    Google Scholar 

  • Rogowski W (1926) Townsend’s Theorie und der Durchschlag der Luft bei Stosspannung. Arch Elektrotech 16:496

    Google Scholar 

  • Sigmond RS (1978) Electrical breakdown in gases. In: Meek J, Graggs JD (eds) Chapter 4, Corona Discharges. Wiley & Sons, New York

    Google Scholar 

  • Townsend JS (1915) Electricity in gases. Clarendon Press, Oxford

    Google Scholar 

  • von Engel A (1965) Ionized gases, 2nd edn. Clarendon, Oxford

    MATH  Google Scholar 

  • von Engel A (1983) Electric plasmas, their nature and uses. Taylor and Francis, London

    Google Scholar 

  • von Engel A, Steenbeck M (1934) Elektrische Gasentladungen, ihre Physik und Technik, vol 1. Springer, Berlin, Germany, p 98

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2023). Basic Concepts of Plasma Generation. In: Boulos, M.I., Fauchais, P.L., Pfender, E. (eds) Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-030-84936-8_11

Download citation

Publish with us

Policies and ethics