Skip to main content
Log in

Space- and direction-resolved Langmuir probe diagnostic in rf planar discharges

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

To consider the anisotropy of the plasma in the sheath regions, Langmuir probe characteristics are measured using a direction-resolving technique. The operation frequency, related to the neutral gas density (ω/p0), is chosen in such a way that the electron velocity distribution function (VDF) may be regarded as frozen and the probe diagnostic may be performed without time resolution. In order to prevent convolution of the VDF from the effect of the time-dependent plasma potential, the rf component of the probe bias voltage is compensated to a minimum. The plasma potential, the mean energy of the electrons, and the electron density, averaged over the discharge bulk, are presented as functions of the discharge current and the neutral gas pressure for the O2 gas. By means of a reactor model based on the theory of plane probes and using the plasma parameter measured, the sheath and bulk portions of the maintaining voltage are separated. In this procedure the thickness of the sheaths in front of the electrodes and the phase difference between discharge current and maintaining voltage are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Godyak and A. S. Kanneh,IEEE Trans. Plasma Sci. 14, 112 (1986).

    Google Scholar 

  2. M. D. Gill,Vacuum 34, 357 (1984).

    Google Scholar 

  3. D. B. Graves,J. Appl. Phys. 62, 88 (1987).

    Google Scholar 

  4. D. B. Graves and K. J. Jensen,IEEE Trans. Plasma Sci. 14, 78 (1986).

    Google Scholar 

  5. J. P. Boeuf,Phys. Rev. 36, 2782 (1987).

    Google Scholar 

  6. C. R. Misum, A. J. Lichtenberg, and M. A. Liebermann,J. Vac. Sci. Technol. A: Vac. Surf. Films 7, 1007 (1989).

    Google Scholar 

  7. A. P. Paranjpe, J. P. McVittie, and S. A. Self,J. Vac. Sci. Technol. A: Vac. Surf. Films 8, 1854 (1990).

    Google Scholar 

  8. A. M. Pointu,Appl. Phys. Lett. 48, 762 (1986).

    Google Scholar 

  9. A. M. Pointu,Appl. Phys. Lett. 50, 316 (1987).

    Google Scholar 

  10. A. M. Pointu,Appl. Phys. Lett. 50, 1047 (1987).

    Google Scholar 

  11. C. C. Zhang-Jun Jin and C. Whitacker,J. Appl. Phys. 62, 1633 (1987).

    Google Scholar 

  12. A. Metze, D. W. Ernie, and H. J. Oskam,J. Appl. Phys. 60, 3081 (1986).

    Google Scholar 

  13. M. J. Kushner,IEEE Trans. Plasma Sci. 14, 188 (1988).

    Google Scholar 

  14. R. W. Boswell and I. J. Morey,Appl. Phys. Lett. 52, 21 (1988).

    Google Scholar 

  15. D. Vender and R. W. Boswell,IEEE Trans. Plasma Sci. 18, 725 (1990).

    Google Scholar 

  16. T. J. Sommerer, W. N. G. Hitchon, and J. E. Lawler,Phys. Reu. Lett. 63, 2361 (1989).

    Google Scholar 

  17. T. J. Sommerer, W. N. G. Hitchon, and J. E. Lawler,Phys. Reu. A 39, 6356 (1989).

    Google Scholar 

  18. S. G. Ingram, B. M. Annaratone, and M. Ohuchi,Rev. Sci. Instrum. 61, 1883 (1990).

    Google Scholar 

  19. B. M. Hopkins, C. A. Anderson, and W. G. Graham,Europhys. Lett. 8, 141 (1989).

    Google Scholar 

  20. C. A. Anderson, W. G. Graham, and M. B. Hopkins,Appl. Phys. Lett. 52, 783 (1988).

    Google Scholar 

  21. J. L. Wilson, J. B. O. Caughman, Phi Long Nguyen, and D. N. Ruzic,J. Vac. Sci. Technol. A: Vac. Surf. Films 7, 972 (1989).

    Google Scholar 

  22. P. Spatenka and M. Sicha,Contrib. Plasma Phys. 29, 57 (1989).

    Google Scholar 

  23. E. R. Mosburg, R. C. Kerns, and J. R. Abelson,J. Appl. Phys. 4, 4916 (1983).

    Google Scholar 

  24. K. F. Al-Assadi, P. A. Chatterton, and J. A. Rees,Vacuum 38, 633 (1988).

    Google Scholar 

  25. P. A. Chatterton, J. A. Rees, W. L. Wu, and K. F. Al-Assadi,Vacuum 42, 489 (1991).

    Google Scholar 

  26. N. St. J. Braithwaite, N. P. Benjamin, and J. E. Allen,J. Phys. E. Sci.Instrum. 20, 1046 (1987).

    Google Scholar 

  27. A. P. Mezentsev, A. S. Mustafaev, and V. L. Federov,J. Phys. D 21, 1464 (1988).

    Google Scholar 

  28. A. P. Mezentsev, A. S. Mustafaev, V. F. Lapshin, and V. L. Federov,J Phys. B 20, L723 (1987).

    Google Scholar 

  29. R. Winkler, H. Deutsch, J. Wilhelm, and C. Wilke,Contrib. Plasma Phys. 24, 285 (1984).

    Google Scholar 

  30. D. L. Flamm,J. Vac. Sci. Technol. A: Vac. Surf. Films 4, 729 (1986).

    Google Scholar 

  31. H. Sabadil, S. Klagge, and M. Kammeyer,Plasma Chem. Plasma Process. 8, 425 (1988).

    Google Scholar 

  32. S. Klagge and A. Lunk,J Appl. Phys. 70, 1 (1991).

    Google Scholar 

  33. D. Herrmann,Exp. Tech. Phys. 16, 410 (1968).

    Google Scholar 

  34. K. Wiesemann,Phys. Lett. A 25, 701 (1967).

    Google Scholar 

  35. H. Sabadil and S. Klagge,Contrib. papers ICPIG-17, Budapest (1985), p.322.

  36. S. Klagge and M. Maaß,Beitr. Plasmaphys. 23, 487 (1983).

    Google Scholar 

  37. J. E. Allen, R. L. F. Boyd, and P. Reynolds,Proc. Phys. Soc. B 70, 297 (1957).

    Google Scholar 

  38. K. U. Riemann,J. Appl. Phys. 65, 999 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klagge, S. Space- and direction-resolved Langmuir probe diagnostic in rf planar discharges. Plasma Chem Plasma Process 12, 103–128 (1992). https://doi.org/10.1007/BF01447441

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447441

Key words

Navigation