Skip to main content
Log in

Accumulation dynamics of seed tocopherols in sunflower lines with modified tocopherol levels

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Sunflower (Helianthus annuus L.) seeds have a tocopherol profile dominated by alpha-tocopherol. The objective of this research was to study the dynamics of tocopherol accumulation in sunflower lines with altered total tocopherol content or tocopherol profile. Developing seeds were sampled at regular intervals in two lines with reduced and increased total tocopherol content, respectively, and six lines with modified tocopherol profiles. The line with reduced tocopherol content showed a tocopherol accumulation rate reduced by half, whereas the line with increased tocopherol content showed a tocopherol accumulation rate twofold higher than the control. In the three cases, alpha-tocopherol followed a sigmoid accumulation pattern. Modified tocopherol profiles were expressed at early stages of tocopherol accumulation. In most lines with modified profiles, tocopherol accumulation pattern differed from the alpha-tocopherol lines, with maximum tocopherol content at 18 or 21 days after flowering (DAF) that was reduced to reach a plateau from 33 or 36 DAF onward. Such a reduction was caused by continued dry matter accumulation after tocopherol accumulation ceased or slowed down. In lines with increased levels of beta-tocopherol or both gamma- and delta-tocopherol, the synthesis of beta- and delta-tocopherol started and stopped earlier than the synthesis of alpha- and gamma-tocopherol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAF:

Days after flowering

DMPBQ:

2,3-Dimethyl-6-phytyl-1,4-benzoquinone

Gamma-TMT:

Gamma-tocopherol methyltransferase

HPPD:

p-Hydroxyphenylpyruvate dioxygenase

HPT:

Homogentisic acid phytyl transferase

MPBQ:

2-Methyl-6-phytyl-1,4-benzoquinone

MPBQ/MSBQ-MT:

2-Methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone methyltransferase

References

  • Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Transgenic Res 15:655–665

    Article  PubMed  CAS  Google Scholar 

  • Collakova E, Dellapenna D (2003) Homogentisate phytyltransferase activity is limiting fortocopherol biosynthesis in arabidopsis. Plant Physiol 131:632–642

    Article  PubMed  CAS  Google Scholar 

  • Del Moral L, Fernández-Martínez JM, Velasco L, Pérez-Vich B (2012) Quantitative trait loci for seed tocopherol content in sunflower. Crop Sci 52:786–794

    Google Scholar 

  • Demurin Y, Škorić D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breeding 115:33–36

    Article  CAS  Google Scholar 

  • Dong G, Liu X, Chen Z, Pan W, Li H, Liu G (2007) The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem 102:138–145

    Article  CAS  Google Scholar 

  • García-Moreno M, Vera-Ruíz EM, Fernández-Martínez JM, Velasco L, Pérez-Vich B (2006) Genetic and molecular analysis of high gamma-tocopherol content in sunflower. Crop Sci 46:2015–2021

    Article  Google Scholar 

  • Goffman FD, Velasco L, Thies W (1999a) Quantitative determination of tocopherols in single seeds of rapeseed (Brassica napus L.). Fett/Lipid 101:142–145

    Article  CAS  Google Scholar 

  • Goffman FD, Velasco L, Becker HC (1999b) Tocopherols accumulation in developing seeds and pods of rapeseed (Brassica napus L.). Fett/Lipid 101:400–403

    Article  CAS  Google Scholar 

  • Haddadi P, Ebrahimi A, Langlade NB, Yazdi-Samadi B, Berger M, Calmon A, Naghavi MR, Vincourt P, Sarrafi A (2012) Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Mol Breeding 29:717–729

    Article  CAS  Google Scholar 

  • Hass CG, Tang S, Leonard S, Traber MG, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–782

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Wessjohann L, Bigirimana J, Monica H, Jansen M, Guisez Y, Caubergs R, Horemans N (2006) Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallée). Plant Physiol Biochem 44:724–731

    Article  PubMed  CAS  Google Scholar 

  • Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42:97–108

    Article  PubMed  CAS  Google Scholar 

  • Kamal-Eldin A, Appelqvist LÅ (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed  CAS  Google Scholar 

  • Marmesat S, Velasco L, Ruiz-Méndez MV, Fernández-Martínez JM, Dobarganes C (2008) Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur J Lipid Sci Technol 110:776–782

    Article  CAS  Google Scholar 

  • Mène-Saffrané L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301–309

    Article  PubMed  Google Scholar 

  • Padley FB, Gunstone FD, Harwood JL (1994) Occurrence and characteristics of oils and fats. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman and Hall, London, pp 47–223

    Google Scholar 

  • Pongracz G, Weiser H, Matzinger D (1995) Tocopherole. Antioxidantien der Natur. Fat Sci Technol 97:90–104

    CAS  Google Scholar 

  • Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Raclaru M, Gruber J, Kumar R, Sadre R, Lühs W, Karim Zarhloul M, Friedt W, Frentzen M, Weier D (2006) Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breeding 18:93–107

    Article  CAS  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Hass CG, Knapp SJ (2006) Ty3/Gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:783–799

    Article  PubMed  CAS  Google Scholar 

  • Traber MG (2007) Vitamin E regulatory mechanisms. Ann Rev Nutr 27:347–362

    Article  CAS  Google Scholar 

  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920

    Article  CAS  Google Scholar 

  • USDA-ARS (2012) National nutrient database for standard reference, release 25. Nutrient data laboratory home page. http://www.ars.usda.gov/Services/docs.htm?docid=8964. Accessed 19 Nov 2012

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene51 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  PubMed  CAS  Google Scholar 

  • Velasco L, Domínguez J, Fernández-Martínez JM (2004a) Registration of T589 and T2100 sunflower germplasms with modified tocopherol profiles. Crop Sci 44:361–362

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2004b) Novel variation for tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breeding 123:490–492

    Article  CAS  Google Scholar 

  • Velasco L, Rojas-Barros P, Fernández-Martínez JM (2005) Fatty acid and tocopherol accumulation in the seeds of a high oleic acid castor mutant. Ind Crops Prod 22:201–206

    Article  CAS  Google Scholar 

  • Velasco L, Del Moral L, Pérez-Vich B, Fernández-Martínez JM (2010) Selection for contrasting seed tocopherol content in sunflower seeds. J Agric Sci 148:393–400

    Article  CAS  Google Scholar 

  • Vera-Ruiz EM, Velasco L, Leon AJ, Fernández-Martínez JM, Pérez-Vich B (2006) Genetic mapping of the Tph1 gene controlling beta-tocopherol accumulation in sunflower seeds. Mol Breeding 17:291–296

    Article  CAS  Google Scholar 

  • Wang X, Song Y, Li J (2013) High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice. J Agric Food Chem. doi:10.1021/jf401325e

    Google Scholar 

Download references

Acknowledgments

L. Del Moral was the recipient of a grant from the FPI Program of the Spanish Ministry of Science and Innovation. The research was funded by the Spanish Ministry of Science and Innovation and EU FEDER funds (Research Project AGL2007-62834) and Dow Agrosciences LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Velasco.

Additional information

Communicated by M. Horbowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Moral, L., Fernández-Martínez, J.M., Pérez-Vich, B. et al. Accumulation dynamics of seed tocopherols in sunflower lines with modified tocopherol levels. Acta Physiol Plant 35, 3157–3165 (2013). https://doi.org/10.1007/s11738-013-1349-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1349-z

Keywords

Navigation