Skip to main content
Log in

Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An investigation was conducted into the effects of annealing temperature on microstructure and tensile properties of ferritic lightweight steels. Two steels were fabricated by varying the C content, and were annealed at 573 K to 1173 K (300 °C to 900 °C) for 1 hour. According to the microstructural analysis results, κ-carbides were formed at about 973 K (700 °C), which was confirmed by equilibrium phase diagrams calculated from a THERMO-CALC program. In the steel containing low carbon content, needle-shaped κ-carbides were homogeneously dispersed in the ferrite matrix, whereas bulky band-shaped martensites were distributed in the steel containing high carbon content. In the 973 K (700 °C)-annealed specimen of the steel containing high carbon content, deformation bands were formed throughout the specimen, while fine carbides were sufficiently deformed inside the deformation bands, thereby resulting in the greatest level of strength and ductility. These results indicated that the appropriate annealing treatment of steel containing high carbon content was useful for the improvement of both strength and ductility over steel containing low carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. INSTRON is a trademark of Instron, Canton, MA.

  3. THERMO-CALC is a trademark of Thermo-Calc, Stockholm.

References

  1. K. Sipos, L. Remy, and A. Pineau: Metall. Mater. Trans. A, 1976, vol. 7A, pp. 857–64.

    CAS  Google Scholar 

  2. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. A28, pp. 99–107.

    Google Scholar 

  3. O. Bouaziz and N. Guelton: Mater. Sci. Eng., 2001, vol. A319, pp. 246–49.

    Google Scholar 

  4. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    CAS  Google Scholar 

  5. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Kwak, and K. Chin: Kor. J. Metall. Mater., 2010, vol. 48, pp. 377–86.

    Article  CAS  Google Scholar 

  6. B.-W. Choi, D.-H. Seo, and J.-I. Jang: Metall. Mater. Int., 2009, vol. 15, pp. 373–78.

    Article  CAS  Google Scholar 

  7. I. Choi, Y. Park, D. Son, S.-J. Kim, and M. Moon: Metall. Mater. Int., 2010, vol. 16, pp. 27–33.

    Article  CAS  Google Scholar 

  8. Y. Kimura, K. Handa, K. Hayashi, and Y. Mishima: Intermetallics, 2004, vol. 12, pp. 607–17.

    Article  CAS  Google Scholar 

  9. N. Ma, T. Park, D. Kim, C. Kim, and K. Chung: Metall. Mater. Int., 2010, vol. 16, pp. 427–39.

    Article  CAS  Google Scholar 

  10. R.G. Baligidad, U. Prakash, A. Radhakrishna, V.R. Rao, P.K. Rao, and N.B. Ballal: Scripta Mater., 1997, vol. 36, pp. 667–71.

    Article  CAS  Google Scholar 

  11. A. Radhakrishna, R.G. Baligidad, and D.S. Sarma: Scripta Mater., 2001, vol. 45, pp. 1077–82.

    Article  CAS  Google Scholar 

  12. O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–16.

    Google Scholar 

  13. G. Frommeyer and J.A. Jiménezet: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 295–300.

    Article  CAS  Google Scholar 

  14. K.-H. Kim, J.-S. Lee, and D.-L. Lee: Metall. Mater. Int., 2010, vol. 16, pp. 871–76.

    Article  CAS  Google Scholar 

  15. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Kwak, and K. Chin: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 138–46.

    Article  Google Scholar 

  16. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  17. “TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee and B. Sundman at KTH,” KTH, Stockholm, 1999.

  18. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee: J. Alloys Compd., 2010, vol. 505, pp. 217–23.

    Article  CAS  Google Scholar 

  19. R. Ayres and D.F. Stein: Acta Metall., 1971, vol. 19, pp. 789–94.

    Article  CAS  Google Scholar 

  20. S.Y. Shin, H. Lee, S.Y. Han, C.-H. Seo, K. Choi, S. Lee, N.J. Kim, J.-H. Kwak, and K.-G Chin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 138–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by POSCO under Contract No. 2008Y221. The authors thank Mr. Seok Su Sohn, POSTECH, for his help with microstructural analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted January 10, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S.Y., Shin, S.Y., Lee, HJ. et al. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels. Metall Mater Trans A 43, 843–853 (2012). https://doi.org/10.1007/s11661-011-0942-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0942-2

Keywords

Navigation