Skip to main content
Log in

Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels has been investigated on the basis of microstructural analysis and thermodynamic calculations. The results showed that an increase of silicon content in high carbon chromium bearing steels retards the spheoridization of cementite. The thermodynamic calculations revealed that the shrinkage of the austenite phase field in bearing steels with increasing silicon content gave rise to an increase of volume fraction of cementite at an annealing temperature, possibly resulting in incomplete spheroidization. Furthermore, due to the low solubility of silicon in cementite, an increase of silicon content can raise the activity or chemical potential of carbon atoms in austenite at the austenite/cementite interfaces. Consequently, the difference in chemical potential of carbon atoms at the interfaces would be reduced with increasing silicon content, causing a decrease of the driving force for their diffusion from cementite to austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Harris and M. Kotzalas, Essential Concepts of Bearing Technology, 5 th ed., Taylor & Francis, Boca Raton (2007).

    Google Scholar 

  2. G. Krauss, Principles of Heat Treatment of Steel, ASM (1980).

  3. K. Monma, R. Maruta, T. Yamamoto, and Y. Wakikado, J. Jpn. I. Met. 32, 1198 (1968).

    CAS  Google Scholar 

  4. K. E. Thelning, Steel and Its Heat Treatment, p. 207–212, Butterworth and Co., London (1984).

    Google Scholar 

  5. W. Knorr and H. Vöge, Steel. A Handbook for Materials Research and Engineering, Vol. 1, p. 589–603, Verein Deutscher Eisenhüttenleute, Düsseldorf (1992).

    Google Scholar 

  6. N. V. Luzginova, L. Zhao, and J. Sietsma, Metall. Mater. Trans. 39A, 513 (2008).

    Article  CAS  Google Scholar 

  7. S. Chattopadhyay and C. M. Sellars, Metallography 10, 89 (1977).

    Article  CAS  Google Scholar 

  8. D. Hernandez-Silva, R. D. Morales, and J. G. Cabanas-Moreno, ISIJ Int. 32, 1297 (1992).

    Article  CAS  Google Scholar 

  9. Y. S. Yang, J. G. Bae, and C. G. Park, J. Kor. Inst. Met. & Mater. 46, 111 (2008).

    CAS  Google Scholar 

  10. E. C. Bain and H. W. Paxton, Alloying Elements in Steel, 2 nd ed., p. 244–245, ASM, Ohio (1966).

    Google Scholar 

  11. H. Ohsaki, R. Ano, A. Yoshida, M. Fujii, and K. Iwasaki, Jpn. J. Tribol. 51, 563 (2006).

    Google Scholar 

  12. H. Ohsaki, R. Ano, A. Yoshida, M. Fujii, and K. Iwasaki, J. Jpn. Soc. Tribol. 51, 652 (2006).

    CAS  Google Scholar 

  13. H. Ohsaki, R. Ano, Y. Ohue, M. Fujii, and A. Yoshida, J. Jpn. Soc. Tribol. 52, 373 (2007).

    CAS  Google Scholar 

  14. T. Yamamoto and Y. Wakikado, Tetsu-to-Hagane 57, 1514 (1971).

    CAS  Google Scholar 

  15. N. Mitamura and Y. Murakami, Motion & Control (NSK Technical Journal) 8, 27 (2000).

    Google Scholar 

  16. W. S. Owen, Trans. ASM 46, 812 (1954).

    Google Scholar 

  17. A. S. Keh and W. C. Leslie, Materials Science Research, Vol. 1, p.208–250, Plenum Publishing, NY, USA (1963).

    Google Scholar 

  18. J. Gordine and I. Codd, J. Iron Steel Inst. 207, 461 (1969).

    CAS  Google Scholar 

  19. G. M. Michal and J. A. Sloane, Metall. Trans. 17A, 1287 (1986).

    CAS  Google Scholar 

  20. D. V. Edmonds, K. He, F. C. Rizzo, B. C. De Cooman, D. K. Matlock, and J. G. Speer, Mater. Sci. Eng. A 438–440, 25 (2006).

    Google Scholar 

  21. G. Miyamoto, J. C. Oh, K. Hono, T. Furuhara, and T. Maki, Acta mater. 55, 5027 (2007).

    Article  CAS  Google Scholar 

  22. S. S. Nayak, R. Anumolu, R. D. K. Misra, K. H. Kim, and D. L. Lee, Mater. Sci. Eng. A 498, 442 (2008).

    Article  Google Scholar 

  23. R. F. Hehemann, Phase Transformations, p. 397–432, ASM, Metals Park, OH, USA (1970).

    Google Scholar 

  24. H. K. D. H. Bhadeshia and D. V. Edmonds, Metall. Trans. 10A, 895 (1979).

    CAS  Google Scholar 

  25. H. K. D. H. Bhadeshia, Bainite in Steels, Institute of Materials, Minerals and Mining, London (1992).

    Google Scholar 

  26. S. J. Matas and R. F. Hehemann, Trans. Met. Soc. AIM 221, 179 (1961).

    CAS  Google Scholar 

  27. B. P. J. Sandvik, Metall. Trans. 13A, 777 (1982).

    Google Scholar 

  28. T. Tarui, S. Konno, and T. Takahashi, Mater. Sci. Forum 426–432, 829 (2003).

    Article  Google Scholar 

  29. Y. S. Choi, I. M. Park, J. H. Kim, K. M. Cho, and D. L. Lee, Met. Mater. Inter. 11, 327 (2005).

    Article  CAS  Google Scholar 

  30. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2 nd ed., Chapman & Hall, London (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Lee, JS. & Lee, DL. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels. Met. Mater. Int. 16, 871–876 (2010). https://doi.org/10.1007/s12540-010-1203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1203-4

Keywords

Navigation