Skip to main content
Log in

Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic \(\upbeta \)-Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pancreatic islet \(\upbeta \)-cells are electrically excitable cells that secrete insulin in an oscillatory fashion when the blood glucose concentration is at a stimulatory level. Insulin oscillations are the result of cytosolic \(\hbox {Ca}^{2+}\) oscillations that accompany bursting electrical activity of \(\upbeta \)-cells and are physiologically important. ATP-sensitive \(\hbox {K}^{+}\) channels (K(ATP) channels) play the key role in setting the overall activity of the cell and in driving bursting, by coupling cell metabolism to the membrane potential. In humans, when there is a defect in K(ATP) channel function, \(\upbeta \)-cells fail to respond appropriately to changes in the blood glucose level, and electrical and \(\hbox {Ca}^{2+}\) oscillations are lost. However, mice compensate for K(ATP) channel defects in islet \(\upbeta \)-cells by employing alternative mechanisms to maintain electrical and \(\hbox {Ca}^{2+}\) oscillations. In a recent study, we showed that in mice islets in which K(ATP) channels are genetically knocked out another \(\hbox {K}^{+}\) current, provided by inward-rectifying \(\hbox {K}^{+}\) channels, is increased. With mathematical modeling, we demonstrated that a sufficient upregulation in these channels can account for the paradoxical electrical bursting and \(\hbox {Ca}^{2+}\) oscillations observed in these \(\upbeta \)-cells. However, the question of determining the correct level of upregulation that is necessary for this compensation remained unanswered, and this question motivates the current study. \(\hbox {Ca}^{2+}\) is a well-known regulator of gene expression, and several examples have been shown of genes that are sensitive to the frequency of the \(\hbox {Ca}^{2+}\) signal. In this mathematical modeling study, we demonstrate that a \(\hbox {Ca}^{2+}\) oscillation frequency-sensitive gene transcription network can adjust the gene expression level of a compensating \(\hbox {K}^{+}\) channel so as to rescue electrical bursting and \(\hbox {Ca}^{2+}\) oscillations in a model \(\upbeta \)-cell in which the key K(ATP) current is removed. This is done without the prescription of a target \(\hbox {Ca}^{2+}\) level, but evolves naturally as a consequence of the feedback between the \(\hbox {Ca}^{2+}\)-dependent enzymes and the cell’s electrical activity. More generally, the study indicates how \(\hbox {Ca}^{2+}\) can provide the link between gene expression and cellular electrical activity that promotes wild-type behavior in a cell following gene knockout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barish ME (1998) Intracellular calcium regulation of channel and receptor expression in the plasmalemma: Potential sites of sensitivity along the pathways linking transcription, translation, and insertion. J Neurobiol 37:146–157. doi:10.1002/(SICI)1097-4695(199810)37:1<146::AID-NEU11>3.0.CO;2-C

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. doi:10.1038/nrm1155

    Article  Google Scholar 

  • Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413–439. doi:10.1007/BF02460633

    Article  MATH  Google Scholar 

  • Bertram R, Sherman A (2004) A calcium-based phantom bursting model for pancreatic islets. Bull Math Biol 66:1313–1344. doi:10.1016/j.bulm.2003.12.005

    Article  MathSciNet  MATH  Google Scholar 

  • Bertram R, Sherman A, Satin LS (2010) Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv Exp Med Biol 654:261–279. doi:10.1007/978-90-481-3271-3_12

    Article  Google Scholar 

  • Bradshaw JM, Kubota Y, Meyer T, Schulman H (2003) An ultrasensitive \(\text{ Ca }^{2+}\)/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci USA 100:10512–10517. doi:10.1073/pnas.1932759100

    Article  Google Scholar 

  • Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial \(\text{ Ca }^{2+}\) uptake depends on the spatial and temporal profile of cytosolic \(\text{ Ca }^{2+}\) signals. J Biol Chem 276:26411–26420. doi:10.1074/jbc.M101101200

    Article  Google Scholar 

  • Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323. doi:10.1146/annurev.neuro.28.061604.135751

    Article  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of \(\text{ Ca }^{2+}\) oscillations. Science 279:227–230. doi:10.1126/science.279.5348.227

    Article  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936. doi:10.1038/31960

    Article  Google Scholar 

  • Drengstig T, Ueda HR, Ruoff P (2008) Predicting perfect adaptation motifs in reaction kinetic networks. J Phys Chem B 112:16752–16758. doi:10.1021/jp806818c

    Article  Google Scholar 

  • Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2004) Oscillations of membrane potential and cytosolic \(\text{ Ca }^{2+}\) concentration in SUR1\(^{-/-}\) beta cells. Diabetologia 47:488–498. doi:10.1007/s00125-004-1348-0

    Article  Google Scholar 

  • Dupont G, Goldbeter A (1998) CaM kinase II as frequency decoder of \(\text{ Ca }^{2+}\) oscillations. BioEssays 20:607–610. doi:10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F

  • Dupont G, Houart G, De Koninck P (2003) Sensitivity of CaM kinase II to the frequency of \(\text{ Ca }^{2+}\) oscillations: a simple model. Cell Calcium 34:485–497. doi:10.1016/j.biosystems.2005.02.004

    Article  Google Scholar 

  • Efanova IB, Zaitsev SV, Zhivotovsky B, Köhler M, Efendić S, Orrenius S, Berggren P-O (1998) Glucose and tolbutamide induce apoptosis in pancreatic? \(\upbeta \)-cells: a process dependent on intracellular \(\text{ Ca }^{2+}\) concentration. J Biol Chem 273:33501–33507. doi:10.1074/jbc.273.50.33501

    Article  Google Scholar 

  • Eraly SA (2014) Striking differences between knockout and wild-type mice in global gene expression variability. PLoS One. doi:10.1371/journal.pone.0097734

    Google Scholar 

  • Falcke M, Malchow D (2003) Understanding calcium dynamics: experiments and theory. Springer, Berlin

    Book  Google Scholar 

  • Frieden C (1970) Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem 245:5788–5799. doi:10.1146/annurev.bi.48.070179.002351

    Google Scholar 

  • Frieden C (1979) Slow transitions and hysteretic behavior in enzymes. Annu Rev Biochem 48:471–489. doi:10.1146/annurev.bi.48.070179.002351

    Article  Google Scholar 

  • Glynn E, Thompson B, Vadrevu S, Lu S, Kennedy RT, Ha J, Sherman A, Satin LS (2016) Chronic glucose exposure systematically shifts the oscillatory threshold of mouse islets: experimental evidence for an early intrinsic mechanism of compensation for hyperglycemia. Endocrinology 157:611–623. doi:10.1210/en.2015-1563

    Article  Google Scholar 

  • Hajnóczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424. doi:10.1016/0092-8674(95)90430-1

    Article  Google Scholar 

  • He F, Fromion V, Westerhoff HV (2013) (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis. BMC Syst Biol 7:131. doi:10.1186/1752-0509-7-131

    Article  Google Scholar 

  • Hedeskov CJ (1980) Mechanism of glucose-induced insulin secretion. Physiol Rev 60(2):442–509. doi:10.1146/annurev-physiol-030212-183754

    Google Scholar 

  • Hellman B (2009) Pulsatility of insulin release—a clinically important phenomenon. Ups J Med Sci 114:193–205. doi:10.3109/03009730903366075

    Article  Google Scholar 

  • Iwakura T, Fujimoto S, Kagimoto S, Inada A, Kubota A, Someya Y, Ihara Y, Yamada Y, Seino Y (2000) Sustained enhancement of \(\text{ Ca }^{2+}\) influx by glibenclamide induces apoptosis in RINm5F cells. Biochem Biophys Res Commun 271:422–428. doi:10.1006/bbrc.2000.2616

    Article  Google Scholar 

  • Kane C, Shepherd RM, Squires PE, Johnson PR, James RF, Milla PJ, Aynsley-Green A, Lindley KJ, Dunne MJ (1996) Loss of functional \(\text{ K }_{\text{ ATP }}\) channels in pancreatic \(\upbeta \)-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med 2:1344–1347. doi:10.1038/nm1296-1344

    Article  Google Scholar 

  • Larsson O, Kindmark H, Brandstrom R, Fredholm B, Berggren PO (1996) Oscillations in \(\text{ K }_{\text{ ATP }}\) channel activity promote oscillations in cytoplasmic free \(\text{ Ca }^{2+}\) concentration in the pancreatic \(\upbeta \) cell. Proc Natl Acad Sci USA 93:5161–5165. doi:10.1073/pnas.93.10.5161

    Article  Google Scholar 

  • LeMasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915–1917. doi:10.1126/science.8456317

    Article  Google Scholar 

  • Li H, Rao A, Hogan PG (2011) Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol 21:91–103. doi:10.1016/j.tcb.2010.09.011

    Article  Google Scholar 

  • Li L, Stefan MI, Le Novère N (2012) Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS One. doi:10.1371/journal.pone.0043810

    Google Scholar 

  • Liu DYT, Liu CH, Lai MT, Lin H-K, Hseu T-H (2007) Global gene expression profiling of wild type and lysC knockout Escherichia coli W3110. FEMS Microbiol Lett 276:202–206. doi:10.1111/j.1574-6968.2007.00932.x

    Article  Google Scholar 

  • Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18:2309–2320

    Google Scholar 

  • Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY (2005) Sulfonylurea induced \(\upbeta \)-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90:501–506. doi:10.1210/jc.2004-0699

    Article  Google Scholar 

  • Matthews DR, Lang DA, Burnett MA, Turner RC (1983a) Control of pulsatile insulin secretion in man. Diabetologia 24:231–237. doi:10.1007/BF00282705

    Article  Google Scholar 

  • Matthews DR, Naylor BA, Jones RG (1983b) Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 37:617–621. doi:10.2337/diabetes.32.7.617

    Article  Google Scholar 

  • Matveyenko AV, Liuwantara D, Gurlo T, Kirakossian D, Dalla Man C, Cobelli C, White MF, Copps KD, Volpi E, Fujita S, Butler PC (2012) Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61:2269–2279. doi:10.2337/db11-1462

    Article  Google Scholar 

  • Matveyenko AV, Veldhuis JD, Butler PC (2008) Measurement of pulsatile insulin secretion in the rat: direct sampling from the hepatic portal vein. Am J Physiol 295:E569–E574. doi:10.1152/ajpendo.90335.2008

    Google Scholar 

  • McKenna JP, Ha J, Merrins MJ, Satin LS, Sherman A, Bertram R (2016) \(\text{ Ca }^{2+}\) effects on ATP production and consumption have regulatory roles on oscillatory islet activity. Biophys J 110:733–742. doi:10.1016/j.bpj.2015.11.3526

    Article  Google Scholar 

  • Merrins MJ, Poudel C, McKenna JP, Ha J, Sherman A, Bertram R, Satin LS (2016) Phase analysis of metabolic oscillations and membrane potential in pancreatic islet \(\upbeta \)-cells. Biophys J 110:691–699. doi:10.1016/j.bpj.2015.12.029

    Article  Google Scholar 

  • Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC (2004) Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic \(\upbeta \)-cells. J Biol Chem 279:32316–32324. doi:10.1074/jbc.M402076200

    Article  Google Scholar 

  • Nichols CG (2006) \(\text{ K }_{\text{ ATP }}\) channels as molecular sensors of cellular metabolism. Nature 440:470–476. doi:10.1038/nature04711

    Article  Google Scholar 

  • Nunemaker CS, Zhang M, Wasserman DH, McGuinness OP, Powers AC, Bertram R, Sherman A, Satin LS (2005) Individual mice can be distinguished by the period of their islet calcium oscillations: is there an intrinsic islet period that is imprinted in vivo? Diabetes 54:3517–3522. doi:10.2337/diabetes.54.12.3517

    Article  Google Scholar 

  • O’Leary T, Williams AH, Franci A, Marder E (2014) Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82:809–821. doi:10.1016/j.neuron.2014.04.002

    Article  Google Scholar 

  • O’Rahilly S, Turner RC, Matthews DR (1988) Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med 318:1225–1230. doi:10.1056/NEJM198805123181902

    Article  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-\(\upkappa \)B family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. doi:10.1101/cshperspect.a000034

    Article  Google Scholar 

  • Olypher AV, Prinz AA (2010) Geometry and dynamics of activity-dependent homeostatic regulation in neurons. J Comput Neurosci 28:361–374. doi:10.1007/s10827-010-0213-z

    Article  MathSciNet  Google Scholar 

  • Paolisso G, Scheen AJ, Giugliano D, Sgambato S, Albert A, Varricchio M, D’Onofrio F, Lefébvre PJ (1991) Pulsatile insulin delivery has greater metabolic effects than continuous hormone administration in man: Importance of pulse frequency. J Clin Endocrinol Metab 72:607–615. doi:10.1210/jcem-72-3-607

    Article  Google Scholar 

  • Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria \(\text{ Ca }^{2+}\) transfer in the control of apoptosis. Oncogene 27:6407–6418. doi:10.1038/onc.2008.308

    Article  Google Scholar 

  • Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E (1988) Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318:1231–1239. doi:10.1056/NEJM198805123181903

    Article  Google Scholar 

  • Pørksen N (2002) The in vivo regulation of pulsatile insulin secretion. Diabetologia 45:3–20. doi:10.1007/s125-002-8240-x

    Article  Google Scholar 

  • Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747. doi:10.1146/annurev.immunol.15.1.707

    Article  Google Scholar 

  • Ravier M, Sehlin J, Henquin JC (2002) Disorganization of cytoplasmic \(\text{ Ca }^{2+}\) oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45:1154–1163. doi:10.1007/s00125-002-0883-9

    Article  Google Scholar 

  • Ren J, Sherman A, Bertram R, Goforth PB, Nunemaker CS, Waters CD, Satin LS (2013) Slow oscillations of \(\text{ K }_{\text{ ATP }}\) conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am J Physiol 305:E805–E817. doi:10.1152/ajpendo.00046.2013

    Google Scholar 

  • Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neuronal modeling: from synapses to networks, 2nd edn. MIT Press, Cambridge, pp 251–291

    Google Scholar 

  • Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17:4987–5000. doi:10.1093/emboj/17.17.4987

    Article  Google Scholar 

  • Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179. doi:10.1146/annurev-physiol-030212-183754

    Article  Google Scholar 

  • Rosati B, McKinnon D (2004) Regulation of ion channel expression. Circ Res 94:874–883. doi:10.1161/01.RES.0000124921.81025.1F

    Article  Google Scholar 

  • Rosen LB, Ginty DD, Greenberg ME (1995) Calcium regulation of gene expression. Adv Second Messenger Phosphoprot Res 30:225–253

    Article  Google Scholar 

  • Salazar C, Politi AZ, Hofer T (2008) Decoding of calcium oscillations by phosphorylation cycles: analytic results. Biophys J 94:1203–1215. doi:10.1529/biophysj.107.113084

    Article  Google Scholar 

  • Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M (1991) Widespread synchronous \(\text{ Ca }^{2+}\) oscillations due to bursting electrical activity in single pancreatic islets. Pflügers Arch Eur J Physiol 418:417–422. doi:10.1007/BF00550880

    Article  Google Scholar 

  • Schuster S, Knoke B, Marhl M (2005) Differential regulation of proteins by bursting calcium oscillations—a theoretical study. BioSystems 81:49–63. doi:10.1016/j.biosystems.2005.02.004

    Article  Google Scholar 

  • Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for \(\text{ K }_{\text{ ATP }}\) channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277. doi:10.1074/jbc.275.13.9270

    Article  Google Scholar 

  • Segil N, Roberts SB, Heintz N (1991) Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254:1814–1816. doi:10.1126/science.1684878

    Article  Google Scholar 

  • Shah P, Demirbilek H, Hussain K (2014) Persistent hyperinsulinaemic hypoglycaemia in infancy. Semin Pediatr Surg 23:76–82. doi:10.1053/j.sempedsurg.2014.03.005

    Article  Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991) CREB: a \(\text{ Ca }^{2+}\)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430. doi:10.1126/science.1646483

    Article  Google Scholar 

  • Sjöholm Å (1995) Regulation of insulinoma cell proliferation and insulin accumulation by peptides and second messengers. Ups J Med Sci 100:201–216. doi:10.3109/03009739509178906

    Article  Google Scholar 

  • Smedler E, Uhlén P (2014) Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 1840:964–969. doi:10.1016/j.bbagen.2013.11.015

    Article  Google Scholar 

  • Song SH, McIntyre SS, Shah H, D Veldhuis J, Hayes PC, Butler PC (2007) Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J Clin Endocrinol Metab 85:4491–4499. doi:10.1210/jcem.85.12.7043

    Google Scholar 

  • Stemmer PM, Klee CB (1994) Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33:6859–6866. doi:10.1021/bi00188a015

    Article  Google Scholar 

  • Sturis J, Pugh WL, Tang J, Ostrega DM, Polonsky JS, Polonsky KS (1994) Alterations in pulsatile insulin secretion in the Zucker diabetic fatty rat. Am J Physiol 267:E250–E259

    Google Scholar 

  • Swulius MT, Waxham MN (2013) \(\text{ Ca }^{2+}\)/calmodulin-dependent protein kinases. Cell Mol Life Sci 65:2637–2657. doi:10.1007/s00018-008-8086-2.Ca

    Article  Google Scholar 

  • Temporal S, Lett KM, Schulz DJ (2014) Activity-dependent feedback regulates correlated ion channel mRNA levels in single identified motor neurons. Curr Biol 24:1899–1904. doi:10.1016/j.cub.2014.06.067

    Article  Google Scholar 

  • Tsien RY, Li W, Llopis J, Whitney M, Zlokarnik G (1998) Cell-permeant caged InsP3 ester shows that \(\text{ Ca }^{2+}\) spike frequency can optimize gene expression. Nature 392:936–941. doi:10.1038/31965

    Article  Google Scholar 

  • Turrigiano G, Abbott LF, Marder E (1994) Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264:974–977. doi:10.1126/science.8178157

    Article  Google Scholar 

  • Vigmond EJ, Trayanova NA, Malkin RA (2001) Excitation of a cardiac muscle fiber by extracellularly applied sinusoidal current. J Cardiovasc Electrophysiol 12:1145–1153. doi:10.1097/FJC.0b013e3181a25078.CaMKII

    Article  Google Scholar 

  • Wang Z, Zhou Y, Luo Y, Zhang J, Zhai Y, Yang D, Zhang Z, Li Y, Storm DR, Ma RZ (2015) Gene expression profiles of main olfactory epithelium in adenylyl cyclase 3 knockout mice. Int J Mol Sci 16:28320–28333. doi:10.3390/ijms161226107

    Article  Google Scholar 

  • West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci 98:11024–11031. doi:10.1073/pnas.191352298

    Article  Google Scholar 

  • Wu Z, Xing J (2012) Functional roles of slow enzyme conformational changes in network dynamics. Biophys J 103:1052–1059. doi:10.1016/j.bpj.2012.08.008

    Article  Google Scholar 

  • Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N (2003) Enhanced expression of L-type \(\text{ Ca }_{\text{ v }}\)1.3 calcium channels in murine embryonic hearts from \(\text{ Ca }_{v}\)1.2-deficient mice. J Biol Chem 278:40837–40841. doi:10.1074/jbc.M307598200

    Article  Google Scholar 

  • Zhang M, Goforth P, Sherman A, Bertram R, Satin LS (2003) The \(\text{ Ca }^{2+}\) dynamics of isolated mouse \(\upbeta \)-cells and islets: implications for mathematical models. Biophys J 84:2852–2870. doi:10.1016/S0006-3495(03)70014-9

    Article  Google Scholar 

  • Zhang Q, Bhattacharya S, Andersen ME (2013) Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 3:130031. doi:10.1098/rsob.130031

    Article  Google Scholar 

  • Zhou J, Kodirov S, Murata M, Miao S, Zheng J, Zhang C, Xiong ZQ (2003) Regional upregulation of Kv2.1-encoded current, \(\text{ I }_{{\rm K, slow2}}\), in Kv1DN mice is abolished by crossbreeding with Kv2DN mice. Am J Physiol 284:H491–H500. doi:10.1152/ajpheart.00576.2002

    Google Scholar 

  • Zhu L, Luo Y, Chen T, Chen F, Wang T, Hu Q (2008) \(\text{ Ca }^{2+}\) oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. J Cell Sci 121:2511–2518. doi:10.1242/jcs.031997

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant from the National Science Foundation (DMS-1612193) to R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram.

Appendices

Appendix 1

The linear differential equation (Eq. 7) that governs the rate of change of the fraction of an activated enzyme has the following form:

$$\begin{aligned} \frac{\mathrm{d}E_a }{\mathrm{d}t}=p_E \frac{c^{n_E }}{c^{n_E }+K_E^{n_E } }\left( {1-E_a } \right) -d_E E_a . \end{aligned}$$
(29)

This can be solved in response to the following square-wave \(\hbox {Ca}^{2+}\) stimulus:

$$\begin{aligned} c(t)=\left\{ {{\begin{array}{ll} c_0 =0.1,&{}\hbox { mod}({t,T})\le D \\ 0,&{}\hbox { mod}({t,T})>D \\ \end{array} }} \right. \end{aligned}$$
(30)

Derivation of the solution is similar to what was done in prior studies (Schuster et al. 2005; Salazar et al. 2008). The solution during the ith oscillation cycle is:

$$\begin{aligned} E_{a,i} \left( \theta \right) =\left\{ {{\begin{array}{ll} E_{ss} +\xi _i e^{-\left( {p_E^*+d_E } \right) \theta },&{} 0\le \theta <D \\ \psi _i e^{-d_E \theta }, &{} D\le \theta \le T \\ \end{array} }} \right. \end{aligned}$$
(31)

where \(E_{a,i} \) is the solution of Eq. 29 for the ith stimulus cycle with the internal time \(\theta \in \left[ {0,T} \right] \) and \(E_{ss} \) and \(p_E^*\) are given by:

$$\begin{aligned} p_E^*= & {} p_E \frac{c_0^{n_E } }{c_0^{n_E } +K_E^{n_E } }, \end{aligned}$$
(32)
$$\begin{aligned} E_{ss}= & {} \frac{1}{1+\frac{d_E }{p_E^*}}. \end{aligned}$$
(33)

For consecutive oscillation cycles \(i-1\) and i,

$$\begin{aligned} E_{a,i-1} (T)=E_{a,i} (0) \end{aligned}$$
(34)

and \(E_{a,i} \) is continuous at D. Therefore, these relations yield the following difference equations for coefficients \(\xi _i \) and \(\psi _i \):

$$\begin{aligned} \xi _{i+1}= & {} E_{ss} \left( {e^{-d_E \left( {T-D} \right) }-1} \right) +e^{-\left( {p_E^*D+d_E T} \right) }\xi _i \end{aligned}$$
(35)
$$\begin{aligned} \psi _i= & {} e^{-p_E^*D}\xi _i +E_{ss} e^{-d_E D}. \end{aligned}$$
(36)

Assuming that the enzyme is completely in its inactive form at the beginning, \(E_{a,0} \left( 0 \right) =0,\) we get \(\xi _0 =-E_{ss} \). The difference equation in Eq. 35 has the form,

$$\begin{aligned} x_{i+1} =ax_i +b \end{aligned}$$
(37)

and with initial condition \(x_0 \):

$$\begin{aligned} x_i= & {} ax_{i-1} +b\\= & {} a(ax_{i-2} +b)+b\\= & {} a^{2}x_{i-2} +ab+b\\= & {} a^{2}\left( {ax_{i-3} +b} \right) +ab+b\\= & {} a^{3}x_{i-3} +a^{2}b+ab+b\\&{\ldots }&\\ x_i= & {} a^{i}x_0 +b {\underbrace{\left( {a^{i-1}+\ldots a^{2}+a+1} \right) }_{\frac{\left( {a^{i}-1} \right) }{a-1}}} \end{aligned}$$

Hence,

$$\begin{aligned} x_i =a^{i}x_0 +\frac{b\left( {a^{i}-1} \right) }{a-1}. \end{aligned}$$
(38)

Therefore, the solution to Eq. 35 is:

$$\begin{aligned} \xi _i =-e^{-\left( {p_E^*D+d_E T} \right) i}E_{ss} +\frac{E_{ss} \left( {e^{-d_E \left( {T-D} \right) }-1} \right) \left( {e^{-\left( {p_E^*D+d_E T} \right) i}-1} \right) }{e^{-\left( {p_E^*D+d_E T} \right) }-1} \end{aligned}$$
(39)

For \(i\rightarrow \infty \),

$$\begin{aligned} \xi _i \rightarrow \xi _\infty =-E_{ss} \frac{e^{-d_E \left( {T-D} \right) }-1}{e^{-\left( {p_E^*D+d_E T} \right) }-1} \end{aligned}$$
(40)

and consequently,

$$\begin{aligned} \psi _i \rightarrow \psi _\infty =E_{ss} \frac{e^{d_E D}-e^{-p_E^*D}}{1-e^{-\left( {p_E^*D+d_E T} \right) }}. \end{aligned}$$
(41)

Thus, over many stimulus cycles the solution to Eq. 31 approaches:

$$\begin{aligned} E_{a,\infty } (\theta )=\left\{ {\begin{array}{ll} E_{ss} +\xi _\infty e^{-\left( {p_E^*+d_E } \right) \theta }, &{} 0\le \theta <D^{-} \\ \psi _\infty e^{-d_E \theta },&{} D^{+}\le \theta \le T \\ \end{array} }\right. . \end{aligned}$$
(42)

The mean fraction of activated enzyme concentration during this stimulus cycle is then given by:

$$\begin{aligned} \bar{E}_a =\frac{1}{T}\mathop {\int }\nolimits _0^T E_{a,\infty } (\theta )\mathrm{d}\theta , \end{aligned}$$
(43)

or upon integration:

$$\begin{aligned} \bar{E}_a =E_{ss} \left( {\frac{D}{T}+\frac{1}{d_E T}E_{ss} \frac{\left( {1-e^{-D\left( {d_E +p_E^*} \right) }} \right) \left( {1-e^{-d_E \left( {T-D} \right) }} \right) }{1-e^{-\left( {p_E^*D+d_E T} \right) }}} \right) . \end{aligned}$$
(44)

Appendix 2

The \(\upbeta \)-cell model is from (Bertram and Sherman 2004) with the following ionic currents:

$$\begin{aligned} I_\mathrm{Ca}= & {} g_\mathrm{Ca} m_\infty \left( {V-V_\mathrm{Ca} } \right) , \end{aligned}$$
(45)
$$\begin{aligned} I_\mathrm{K}= & {} g_K n\left( {V-V_K } \right) ,\end{aligned}$$
(46)
$$\begin{aligned} I_{K_\mathrm{ATP} }= & {} g_{K_\mathrm{ATP} } a\left( {V-V_K } \right) , \end{aligned}$$
(47)
$$\begin{aligned} I_{K_\mathrm{Ca} }= & {} g_{K_\mathrm{Ca} } \omega \left( {V-V_K } \right) ,\end{aligned}$$
(48)
$$\begin{aligned} I_l= & {} g_l \left( {V-V_l } \right) , \end{aligned}$$
(49)
$$\begin{aligned} I_{\mathrm{cmp}}= & {} g_{\mathrm{cmp}} k_\infty \left( {V-V_K } \right) . \end{aligned}$$
(50)

For each ionic current \(I_i , g_i \) is the maximal conductance, \(V_i\) is the reversal potential and \(({V-V_i })\) is the driving force. The rates of changes of the delayed rectifier \(\hbox {K}^{+}\) current activation, n, and the K(ATP) current activation, a, are:

$$\begin{aligned} \frac{\mathrm{d}n}{\mathrm{d}t}=\left( {n_\infty \left( V \right) -n} \right) /\tau _n ,\end{aligned}$$
(51)
$$\begin{aligned} \frac{\mathrm{d}a}{\mathrm{d}t}=\left( {a_\infty \left( c \right) -a} \right) /\tau _a , \end{aligned}$$
(52)

where \(\tau _n \) and \(\tau _a \) are the time constants. Steady-state activation functions, \(m_\infty , n_\infty \), \(a_\infty \) and \(k_\infty \), are:

$$\begin{aligned} m_\infty (V)= & {} \frac{1}{1+e^{\left( {-20-V} \right) /12}}, \end{aligned}$$
(53)
$$\begin{aligned} n_\infty (V)= & {} \frac{1}{1+e^{\left( {-16-V} \right) /5}}, \end{aligned}$$
(54)
$$\begin{aligned} k_\infty (V)= & {} \frac{1}{1+e^{\left( {-49-V} \right) /15}}, \end{aligned}$$
(55)
$$\begin{aligned} a_\infty (c)= & {} \frac{1}{1+e^{\left( {0.14-c} \right) /0.1}}, \end{aligned}$$
(56)

where \(m_\infty , n_\infty , a_\infty \) and \(k_\infty \) are sigmoidal functions of V and c. \(\omega \) is the \(\hbox {Ca}^{2+}\)-dependent activation variable of \(I_{K_\mathrm{Ca} } \) and given with the following Hill equation:

$$\begin{aligned} \omega =\frac{c^{5}}{c^{5}+K_\omega ^5 }, \end{aligned}$$
(57)

where \(K_{\upomega } \) is the dissociation constant. \(\hbox {Ca}^{2+}\) fluxes across the plasma and endoplasmic reticulum (ER) membranes are:

$$\begin{aligned} J_\mathrm{mem}= & {} -\left( {\alpha I_\mathrm{Ca} +k_\mathrm{pmca} c} \right) , \end{aligned}$$
(58)
$$\begin{aligned} J_\mathrm{er}= & {} p_\mathrm{leak} \left( {c_\mathrm{er} -c} \right) -k_\mathrm{serca} c,\end{aligned}$$
(59)

where parameter \(\alpha \) converts ionic current to flux and provides \(\hbox {Ca}^{2+}\) influx through voltage-gated \(\hbox {Ca}^{2+}\) channels and \(k_\mathrm{pmca} \) is the plasma membrane \(\hbox {Ca}^{2+}\)-ATPase pumping rate and mediates \(\hbox {Ca}^{2+}\) efflux from the cytosol. \(\hbox {Ca}^{2+}\) leaks from the ER with a rate proportional to \(p_\mathrm{leak} \). \(k_\mathrm{serca} \) is the \(\hbox {Ca}^{2+}\) pumping rate into the ER by SERCA pumps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, V., Bertram, R. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic \(\upbeta \)-Cells. Bull Math Biol 79, 1295–1324 (2017). https://doi.org/10.1007/s11538-017-0286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0286-1

Keywords

Navigation