Skip to main content

Electrical Bursting, Calcium Oscillations, and Synchronization of Pancreatic Islets

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Oscillations are an integral part of insulin secretion and are ultimately due to oscillations in the electrical activity of pancreatic β-cells, called bursting. In this chapter we discuss islet bursting oscillations and a unified biophysical model for this multi-scale behavior. We describe how electrical bursting is related to oscillations in the intracellular Ca2+ concentration within β-cells and the role played by metabolic oscillations. Finally, we discuss two potential mechanisms for the synchronization of islets within the pancreas. Some degree of synchronization must occur, since distinct oscillations in insulin levels have been observed in hepatic portal blood and in peripheral blood sampling of rats, dogs, and humans. Our central hypothesis, supported by several lines of evidence, is that insulin oscillations are crucial to normal glucose homeostasis. Disturbance of oscillations, either at the level of the individual islet or at the level of islet synchronization, is detrimental and can play a major role in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflügers Archiv. 1991;418:417–22.

    PubMed  CAS  Google Scholar 

  2. Beauvois MC, Merezak C, Jonas J-C, Ravier MA, Henquin J-C. Glucose-induced mixed [Ca2+]c oscillations in mouse β–cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am. J. Physiol. 2006;290:C1503–11.

    CAS  Google Scholar 

  3. Gilon P, Shepherd RM, Henquin JC. Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidenced in single pancreatic islets. J. Biol. Chem. 1993;268:22265–8.

    PubMed  CAS  Google Scholar 

  4. Pørksen N. The in vivo regulation of pulsatile insulin secretion. Diabetologia 2002;45:3–20.

    PubMed  Google Scholar 

  5. Nunemaker CS, Zhang M, Wasserman DH, McGuinness OP, Powers AC, Bertram R, Sherman A, Satin LS. Individual mice can be distinguished by the period of their islet calcium oscillations: Is there an intrinsic islet period that is imprinted in vivo? Diabetes 2005;54:3517–22.

    PubMed  CAS  Google Scholar 

  6. Lang DA, Matthews DR, Burnett M, Turner RC. Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 1981;30:435–9.

    PubMed  CAS  Google Scholar 

  7. Pørksen N, Munn S, Steers J, Vore S, Veldhuis J, Butler P. Pulsatile insulin secretion accounts for 70% of total insulin secretion during fasting. Am. J. Physiol. 1995;269:E478–88.

    PubMed  Google Scholar 

  8. Matveyenko AV, Veldhuis JD, Butler PC. Measurement of pulsatile insulin secretion in the rat: direct sampling from the hepatic portal vein. Am. J. Physiol. 2008;295:E569–74.

    CAS  Google Scholar 

  9. Song SH, McIntyre SS, Shah H, Veldhuis JD, Hayes PC, Butler PC. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 2000;85:4491–99.

    PubMed  CAS  Google Scholar 

  10. Pørksen N, Nyholm B, Veldhuis JD, Butler PC, Schmitz O. In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. Am. J. Physiol. 1997;273:E908–14.

    PubMed  Google Scholar 

  11. Polonsky KS, Jaspan J, Emmanouel D, Holmes K, Moossa AR. Differences in the hepatic and renal extraction of insulin and glucagon in the dog: evidence for saturability of insulin metabolism. Acta Endocrinol. (Copenh.) 1983;102:420–27.

    CAS  Google Scholar 

  12. Eaton RP, Allen RC, Schade DS. Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J. Clin. Endocrinol. Metab. 1983;56:1294–1300.

    PubMed  CAS  Google Scholar 

  13. Meier JJ, Veldhuis JD, Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 2005;54:1649–56.

    PubMed  CAS  Google Scholar 

  14. Matthews DR, Lang DA, Burnett M, Turner RC. Control of pulsatile insulin secretion in man. Diabetologia 1983;24:231–7.

    PubMed  CAS  Google Scholar 

  15. O’Rahilly S, Turner RC, Matthews DR. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N. Engl. J. Med. 1988;318:1225–30.

    PubMed  Google Scholar 

  16. Weigle DS. Pulsatile secretion of fuel-regulatory hormones. Diabetes 1987;36:764–75.

    PubMed  CAS  Google Scholar 

  17. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, van Cauter E. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1988;318:1231–9.

    PubMed  CAS  Google Scholar 

  18. Stagner JI, Samols E, Weir GC. Sustained oscillations of insulin, glucagon, and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J. Clin. Invest. 1980;65:939–42.

    PubMed  CAS  Google Scholar 

  19. Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE. Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J. Biol. Chem. 1991;266:9314–9.

    PubMed  CAS  Google Scholar 

  20. Ritzel RA, Veldhuis JD, Butler PC. The mass, but not the frequency, of insulin secretory bursts in isolated human islets is entrained by oscillatory glucose exposure. Am. J. Physiol. 2006;290:E750–6.

    CAS  Google Scholar 

  21. Bergsten P, Hellman B. Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 1993;42:670–4.

    PubMed  CAS  Google Scholar 

  22. Bergsten P. Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets correspond to pulsatile insulin release. Am. J. Physiol. 1995;268:E282–7.

    PubMed  CAS  Google Scholar 

  23. Bergsten P. Glucose-induced pulsatile insulin release from single islets at stable and oscillatory cytoplasmic Ca2+. Am. J. Physiol. 1998;274:E796–800.

    PubMed  CAS  Google Scholar 

  24. Nunemaker CS, Zhang M, Wasserman DH, McGuinness OP, Powers AC, Bertram R, Sherman A, Satin LS. Individual mice can be distinguished by the period of their islet calcium oscillations: Is there an intrinsic islet period which is imprinted in vivo? Diabetes 2005;54:3517–22.

    PubMed  CAS  Google Scholar 

  25. Göpel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renström E, Rorsman P. Activation of Ca2+-dependent K+ channels contributes to rhythmic firing of action potentials in mouse pancreatic β cells. J. Gen. Physiol. 1999;114:759–69.

    PubMed  Google Scholar 

  26. Goforth PB, Bertram R, Khan FA, Zhang M, Sherman A, Satin LS. Calcium-activated K+ channels of mouse β-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J. Gen. Physiol. 2002;114:759–69.

    Google Scholar 

  27. Chay TR, Keizer J. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 1983;42:181–90.

    PubMed  CAS  Google Scholar 

  28. Gilon P, Arredouani A, Gailly P, Gromada J, Henquin J-C. Uptake and release of Ca2+by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+concentration triggered by Ca2+ influx in the electrically excitable pancreatic B-cell. J. Biol. Chem. 1999;274:20197–205.

    PubMed  CAS  Google Scholar 

  29. Arredouani A, Henquin J-C, Gilon P. Contribution of the endoplasmic reticulum to the glucose-induced [Ca2+]c response in mouse pancreatic islets. Am. J. Physiol. 2002;282:E982–91.

    CAS  Google Scholar 

  30. Bertram R, Sherman A. Filtering of calcium transients by the endoplasmic reticulum in pancreatic β-cells. Biophys. J. 2004;87:3775–85.

    PubMed  CAS  Google Scholar 

  31. Ammala A, Larson O, Berggren P.-O, Bokvist K, Juntti-Berggren L, Kindmark H, Rorsman P. Inositol trisphosphate-dependent periodic activation of a Ca2+-activated K+ conductance in glucose-stimulated pancreatic β-cells. Nature, 353:849–52, 1991.

    PubMed  Google Scholar 

  32. Keizer J, De Young G. Effect of voltage-gated plasma membrane Ca2+ fluxes on IP3-linked Ca2+ oscillations. Cell Calcium 1993;14:397–410.

    PubMed  CAS  Google Scholar 

  33. Zhan X, Yang L, Ming Y, Jia Y. RyR channels and glucose-regulated pancreatic β-cells. Eur. Biophys. J. 2008;37:773–82.

    PubMed  CAS  Google Scholar 

  34. Kindmark H, Köhler M, Brown G, Bränström R, Larsson O, Berggren P-O. Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic β-cell. J. Biol. Chem. 2001;276:34530–6.

    PubMed  CAS  Google Scholar 

  35. Magnus G, Keizer J. Minimal model of β-cell mitochondrial Ca2+ handling. Am. J. Physiol. 1997;273: C717–33.

    PubMed  CAS  Google Scholar 

  36. Magnus G, Keizer J. Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. Am. J. Physiol. 1998;274:C1158–73.

    PubMed  CAS  Google Scholar 

  37. Krippeit-Drews P, Dufer M, Drews G. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic β-cells. Biochem. Biophys. Res. Commun. 2000;267:179–83.

    CAS  Google Scholar 

  38. MacDonald MJ, Fahien LA, Buss JD, Hasan NM, Fallon MJ, Kendrick MA. Citrate oscillates in liver and pancreatic beta cell mitochondria and in INS-1 insulinoma cells. J. Biol. Chem. 2003;278:51894–900.

    PubMed  CAS  Google Scholar 

  39. Civelek VN, Deeney JT, Shalosky NJ, Tornheim K, Hansford RG, Prentki M, Corkey BE. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP. Biochem. J. 1996;318:615–21.

    PubMed  CAS  Google Scholar 

  40. Ashcroft FM, Harrison DE, Ashcroft SJH. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 1984;312:446–8.

    PubMed  CAS  Google Scholar 

  41. Keizer J, Magnus G. The ATP-sensitive potassium channel and bursting in the pancreatic beta cell. Biophys. J. 1989;56:229–42.

    PubMed  CAS  Google Scholar 

  42. Bertram R, Sherman A. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol. 2004;66:1313–44.

    PubMed  CAS  Google Scholar 

  43. Smolen P, Keizer J. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic beta-cell. J. Membrane Biol. 1992;127:9–19.

    CAS  Google Scholar 

  44. Henquin JC. Glucose-induced electrical activity in beta-cells: feedback control of ATP-sensitive K+ channels by Ca2+? Diabetes 1990;39:1457–60.

    PubMed  CAS  Google Scholar 

  45. Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G. Oscillations of membrane potential and cytosolic Ca2+ concentration in SUR1-/- beta cells. Diabetologia 2004;47:488–98.

    PubMed  Google Scholar 

  46. Szollosi A, Nenquin M, Aguilar-Bryan L, Bryan J, Henquin J-C. Glucose stimulates Ca2+ influx and insulin secretion in 2-week-old β-cells lacking ATP-sensitive K+ channels. J. Biol. Chem. 2007;282:1747–56.

    PubMed  CAS  Google Scholar 

  47. Ravier MA, Nenquin M, Miki T, Seino S, Henquin J-C. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 2009;150:33–45.

    PubMed  CAS  Google Scholar 

  48. Fridlyand LE, Tamarina N, Phillipson LH. Modeling the Ca2+ flux in pancreatic β-cells: role of the plasma membrane and intracellular stores. Am. J. Physiol. 2003;285:E138–54.

    CAS  Google Scholar 

  49. Diederichs F. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic β-cell. Bull. Math. Biol. 2006;68:1779–18.

    PubMed  CAS  Google Scholar 

  50. Tornheim K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 1997;46:1375–80.

    PubMed  CAS  Google Scholar 

  51. Bertram R, Sherman A, Satin LS. Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am. J. Physiol. 2007;293:E890–900.

    CAS  Google Scholar 

  52. Tornheim K, Lowenstein JM. The purine nucleotide cycle: IV. Interactions with oscillations of the glycolytic pathway in muscle extracts. J. Biol. Chem. 1974;249:3241–47.

    PubMed  CAS  Google Scholar 

  53. Tornheim K, Andrés V, Schultz V. Modulation by citrate of glycolytic oscillations in skeletal muscle extracts. J. Biol. Chem. 1991;266:15675–8.

    PubMed  CAS  Google Scholar 

  54. Yaney GC, Schultz V, Cunningham BA, Dunaway GA, Corkey BE, Tornheim K. Phosphofructokinase isozymes in pancreatic islets and clonal β-cells (INS-1). Diabetes 1995;44:1285–9.

    PubMed  CAS  Google Scholar 

  55. Tornheim K. Oscillations of the glycolytic pathway and the purine nucleotide cycle. J. theor. Biol. 1979;79:491–541.

    PubMed  CAS  Google Scholar 

  56. Smolen P. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. J. theor. Biol. 1995;174:137–48.

    PubMed  CAS  Google Scholar 

  57. Westermark PO, Lansner A. A model of phosphofructokinase and glycolytic oscillations in the pancreatic β-cell. Biophys. J. 2003;85:126–39.

    PubMed  CAS  Google Scholar 

  58. Kennedy RT, Kauri LM, Dahlgren GM, Jung S-K. Metabolic oscillations in β-cells. Diabetes 2002;51:S152–61.

    PubMed  CAS  Google Scholar 

  59. Ortsäter H, Liss P, Lund PE, Åkerman KEO, Bergsten P. Oscillations in oxygen tension and insulin release of individual pancreatic ob/ob mouse islets. Diabetologia 2000;43:1313–8.

    PubMed  Google Scholar 

  60. Bergsten P, Westerlund J, Liss P, Carlsson P-O. Primary in vivo oscillations of metabolism in the pancreas. Diabetes 2002;51:699–703.

    PubMed  CAS  Google Scholar 

  61. Juntti-Berggren L, Webb D-L, Arkhammar POG, Schultz V, Schweda EKH, Tornheim K, Berggren P-O. Dihydroxyacetone-induced oscillations in cytoplasmic free Ca2+ and the ATP/ADP ratio in pancreatic β-cells at substimulatory glucose. J. Biol. Chem. 2003;278:40710–6.

    PubMed  CAS  Google Scholar 

  62. Nilsson T, Schultz V, Berggren P-O, Corkey BE, Tornheim K. Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic β-cells. Biochem. J. 1996;314:91–4.

    PubMed  CAS  Google Scholar 

  63. Ainscow EK, Rutter GA. Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet β–cells. Diabetes 2002;51:S162–70.

    PubMed  CAS  Google Scholar 

  64. Chou H-F, Berman N, Ipp E. Oscillations of lactate released from islets of Langerhans: evidence for oscillatory glycolysis in β-cells. Am. J. Physiol. 1992;262:E800–5.

    PubMed  CAS  Google Scholar 

  65. Luciani DS, Misler S, Polonsky KS. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J. Physiol. 2006;572:379–92.

    PubMed  CAS  Google Scholar 

  66. Ristow M, Vorgerd M, Möhlig M, Schatz H, Pfeiffer A. Deficiency of phosphofructo-1-kinase/muscle subtype in humans impairs insulin secretion and causes insulin resistance. J. Clin. Invest. 1997;100:2833–41.

    PubMed  CAS  Google Scholar 

  67. Ristow M, Carlqvist H, Hebinck J, Vorgerd M, Krone W, Pfeiffer A, Muller-Wieland D, Ostenson CG. Deficiency of phosphofructo-1-kinase/muscle subtype in humans is associated with impairment of insulin secretory oscillations. Diabetes 1999;48:1557–61.

    PubMed  CAS  Google Scholar 

  68. Sel’kov EE. Self-oscillations in glycolysis: a simple kinetic model. European J. Biochem. 1968;4:79–86.

    Google Scholar 

  69. Goldbeter A, Lefever R. Dissipative structures for an allosteric model; application to glycolytic oscillations. Biophys. J. 1972;12:1302–15.

    PubMed  CAS  Google Scholar 

  70. Wierschem K, Bertram R. Complex bursting in pancreatic islets: A potential glycolytic mechanism. J. theor. Biol. 2004;228:513–21.

    PubMed  CAS  Google Scholar 

  71. Zhang M, Goforth P, Sherman A, Bertram R, Satin L. The Ca2+ dynamics of isolated mouse β-cells and islets: Implications for mathematical models. Biophys. J. 2003;84:2852–70.

    PubMed  CAS  Google Scholar 

  72. Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 1994;269:8749–53.

    PubMed  CAS  Google Scholar 

  73. Valdeolmillos M, Santos RM, Contreras D, Soria B, Rosario LM. Glucose-induced oscillations of intracellular Ca2+ concentration resembling electrical activity in single mouse islets of Langerhans. FEBS Lett. 1989;259:19–23.

    PubMed  CAS  Google Scholar 

  74. Cook DL. Isolated islets of Langerhans have slow oscillations of electrical activity. Metabolism 1983;32:681–5.

    PubMed  CAS  Google Scholar 

  75. Henquin JC, Meissner HP, Schmeer W. Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflügers Archiv. 1982;393:322–7.

    PubMed  CAS  Google Scholar 

  76. Jung S-K, Aspinwall CA, Kennedy RT. Detection of multiple patterns of oscillatory oxygen consumption in single mouse islets of Langerhans. Biochem. Biophys. Res. Commun. 1999;259:331–5.

    PubMed  CAS  Google Scholar 

  77. Jung S-K, Kauri LM, Qian W-J, Kennedy RT. Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca2+ in single islets of Langerhans. J. Biol. Chem. 2000;275:6642–50.

    PubMed  CAS  Google Scholar 

  78. Dahlgren GM, Kauri LM, Kennedy RT. Substrate effects on oscillations in metabolism, calcium and secretion in single mouse islets of Langerhans. Biochim. Biophys. Acta 2005;1724:23–36.

    PubMed  CAS  Google Scholar 

  79. Bertram R, Satin L, Zhang M, Smolen P, Sherman A. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 2004;87:3074–87.

    PubMed  CAS  Google Scholar 

  80. Bertram R, Satin LS, Pedersen MG, Luciani DS, Sherman Af Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys. J. 2007;92:1544–55.

    PubMed  CAS  Google Scholar 

  81. Kulkarni RN, Roper MG, Dahlgren GM, Shih DQ, Kauri LM, Peters JL, Stoffel M, Kennedy RT. Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3. Diabetes 2004;53:1517–25.

    PubMed  CAS  Google Scholar 

  82. Dean PM, Mathews EK. Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. 1970;210:255–64.

    PubMed  CAS  Google Scholar 

  83. Meissner HP, Schmelz H. Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 1974;351:195–206.

    PubMed  CAS  Google Scholar 

  84. Beigelman PM, Ribalet B. Beta-cell electrical activity in response to high glucose concentration. Diabetes 1980;29:263–5.

    PubMed  CAS  Google Scholar 

  85. Nunemaker CS, Bertram R, Sherman A, Tsaneva-Atanasova K, Daniel CR, Satin LS. Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 2006;91:2082–96.

    PubMed  CAS  Google Scholar 

  86. Ravier MA, Henquin JC. Time and amplitude regulation of pulsatile insulin secretion by triggering and amplifying pathways in mouse islets. FEBS Lett. 2002;530:215–9.

    PubMed  CAS  Google Scholar 

  87. Brunicardi FC, Shavelle DM, Andersen DK. Neural regulation of the endocrine pancreas. Int. J. Pancreatol. 1995;18:177–95.

    PubMed  CAS  Google Scholar 

  88. Ahren B. Autonomic regulation of islet hormone secretion-Implications for health and disease. Diabetologia 2000;43:393–410.

    PubMed  CAS  Google Scholar 

  89. Kirchgessner AL, Gershon MD. Innervation of the pancreas by neurons of the gut. J. Neurosci. 1990;10:1626–42.

    PubMed  CAS  Google Scholar 

  90. King BF, Love JA, Szurszewski JH. Intracellular recording from pancreatic ganglia of the cat. J. Physiol. 1989;419:379–403.

    PubMed  CAS  Google Scholar 

  91. Zhang M, Fendler B, Peercy B, Goel P, Bertram R, Sherman A, Satin L. Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys. J. 2008;95:4676–88.

    PubMed  CAS  Google Scholar 

  92. Stagner JI, Samols E. Role of intrapancreatic ganglia in regulation of periodic insular secretions. Am. J. Physiol. 1985;248:E522–30.

    PubMed  CAS  Google Scholar 

  93. Sha L, Westerlund J, Szurszewski JH, Bergsten P. Amplitude modulation of pulsatile insulin secretion by intrapancreatic ganglion neurons. Diabetes 2001;50:51–5.

    PubMed  CAS  Google Scholar 

  94. Coupland RE. The innervation of pancreas of the rat, cat, and rabbits as revealed by the cholinesterase technique. J. Anat. 1958;92:143–9.

    PubMed  CAS  Google Scholar 

  95. Kirchgessner AL, Pintar JE. Guinea pig pancreatic ganglia: projections, transmitter content, and the type-specific localization of monoamine oxidase. J. Comp. Neurol. 1991;305:613–631.

    PubMed  CAS  Google Scholar 

  96. Ushiki T, Watanabe S. Distribution and ultrastructure of the autonomic nerves in the mouse pancreas. Microsc. Res. Techniq. 1997;37:399–406.

    CAS  Google Scholar 

  97. Godfrey DA, Matschinsky FM. Enzymes of the cholinergic system in islets of Langerhans. J. Histochem. Cytochem. 1975;23:645–51.

    PubMed  CAS  Google Scholar 

  98. Iismaa TP, Kerr EA, Wilson JR, Carpenter L, Sims N, Biden TJ. Quantitative and functional characterization of muscarinic receptor subtypes in insulin-secreting cell lines and rat pancreatic islets. Diabetes 2000;49:392–8.

    PubMed  CAS  Google Scholar 

  99. Berthoud HR, Powley TL. Identification of vagal preganglionics that mediate cephalic phase insulin response. Am. J. Physiol. 1990;258:R523–30.

    PubMed  CAS  Google Scholar 

  100. Bloom SR, Edwards AV. Pancreatic endocrine responses to stimulation of the peripheral ends of the vagus nerves in conscious calves. J. Physiol. 1980;315:31–41.

    Google Scholar 

  101. Ahren B, Taborsky Jr. GJ. The mechanism of vagal nerve stimulation of glucagon and insulin secretion in the dog. Endocrinology 1986;118:1551–7.

    PubMed  CAS  Google Scholar 

  102. Nishi S, Seino Y, Ishida H, Seno M, Taminato T, Sakurai H, Imura H. Vagal regulation of insulin, glucagon, and somatostatin secretion in vitro in the rat. J. Clin. Invest. 1987;79:1191–6.

    PubMed  CAS  Google Scholar 

  103. Lang DA, Matthews DR, Burnett M, Ward GM, Turner RC. Pulsatile, synchronous basal insulin and glucagon secretion in man. Diabetes 1982;31:22–6.

    PubMed  CAS  Google Scholar 

  104. Song SH, Kjems L, Ritzel R, McIntyre SM, Johnson ML, Veldhuis JD, Butler PC. Pulsatile insulin secretion by human pancreatic islets. J. Clin. Endocrinol. Metab. 2002;87:213–21.

    PubMed  CAS  Google Scholar 

  105. Pedersen MG, Bertram R, Sherman A. Intra- and inter-islet synchronization of metabolically driven insulin secretion. Biophys. J. 2005;89:107–19.

    PubMed  CAS  Google Scholar 

  106. Sturis J, Pugh WL, Tang J, Ostrega DM, Polonsky JS, Polonsky KS. Alterations in pulsatile insulin secretion in the Zucker diabetic fatty rat. Am. J. Physiol. 1994;267:E250–9.

    PubMed  CAS  Google Scholar 

  107. Gilon P, Ravier MA, Jonas J-C, Henquin J-C. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 2002;51:S144–51.

    PubMed  CAS  Google Scholar 

  108. Gonze D, Markadieu N, Goldbeter A. Selection of in-phase or out-of-phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations. Chaos 2008;18.

    Google Scholar 

  109. Grapengiesser E, Gylfe E, Dansk H, Hellman B. External ATP triggers Ca2+ signals suited for synchronization of pancreatic beta-cells. J. Endocrinol. 2005;185:69–79.

    PubMed  CAS  Google Scholar 

  110. Linquist I, Alm P, Salehi A, Henningsson R, Grapengiesser E, Hellman B. Carbon monoxide stimulates insulin release and propagates Ca2+ signals between beta-cells. Am. J. Physiol. 2003;285:E1055–63.

    Google Scholar 

Download references

Acknowledgments

The authors thank Bernard Fendler, Pranay Goel, Craig Nunemaker, Morten Gram Pedersen, Brad Peercy, and Min Zhang for collaboration on some of the work described herein. RB is supported by NSF grant 0613179. AS is supported by the Intramural Research Program of the NIH (NIDDK). LS is supported by NIH grant RO1 DK 46409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bertram, R., Sherman, A., Satin, L.S. (2010). Electrical Bursting, Calcium Oscillations, and Synchronization of Pancreatic Islets. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_12

Download citation

Publish with us

Policies and ethics