Skip to main content
Log in

A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, \(\pm s\) and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant \(s\,{>}\,0\) with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  Google Scholar 

  • Adler J (1969) Chemoreceptors in bacteria. Science 166:1588–1597

    Article  Google Scholar 

  • Adler J, Dahl M (1967) A method for measuring the motility of bacteria and for comparing random and non-random motility. J Gen Microbiol 46:161–173

    Article  Google Scholar 

  • Adler J, Templeton B (1967) The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol 46:175–184

    Article  Google Scholar 

  • Alt W (1980) Biased random walk models for chemotaxis and related diffusion approximations. J Math Biol 9(2):147–177

    Article  MathSciNet  MATH  Google Scholar 

  • Chalub FACC, Markowich PA, Perthame B, Schmeiser C (2002) Kinetic models for chemotaxis and their drift-diffusion limits, nonlinear differential equation models. Springer, Heidelberg

    MATH  Google Scholar 

  • Chalub FACC, Markowich PA, Perthame B, Schmeiser C (2004) Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh Math 142(1–2):123–141 MR 2065025

    Article  MathSciNet  MATH  Google Scholar 

  • Cho E, Kim Y-J (2013) Starvation driven diffusion as a survival strategy of biological organisms. Bull Math Biol 75(5):845–870 MR 3050058

    Article  MathSciNet  MATH  Google Scholar 

  • Choi S-H, Kim Y-J (2015) Chemotactic traveling waves by metric of food. SIAM J Appl Math 75(5):2268–2289 MR 3411734

    Article  MathSciNet  MATH  Google Scholar 

  • Chung J, Kim Y-J (2015) Spatially non-uniform random walk on the real line, preprint. (http://amath.kaist.ac.kr/papers/Kim/33)

  • Collett M, Despland E, Simpson SJ, Krakauer DC (1998) Spatial scales of desert locust gregarization. Proc Natl Acad Sci 95(22):13052–13055

    Article  Google Scholar 

  • Funaki T, Izuhara H, Mimura M, Urabe C (2012) A link between microscopic and macroscopic models of self-organized aggregation. Netw Heterog Media 7(4):705–740 MR 3004683

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Othmer HG (2000) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62(4):1222–1250

    MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217 MR 2448428 (2009m:92017)

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D, Stevens A (2004) A constructive approach to traveling waves in chemotaxis. J Nonlinear Sci 14:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang H-J, Kang K, Stevens A (2005a) Drift-diffusion limits of kinetic models for chemotaxis: a generalization. Discrete Contin Dyn Syst Ser B 5(2):319–334

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang H-J, Kang K, Stevens A (2005b) Global solutions of nonlinear transport equations for chemosensitive movement. SIAM J Math Anal 36(4):1177–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Iida M, Mimura M, Ninomiya H (2006) Diffusion, cross-diffusion and competitive interaction. J Math Biol 53(4):617–641 MR 2251792

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson M, Gaines M (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammels. Ann Rev Ecol Syst 21:449–480

    Article  Google Scholar 

  • Keller EF, Odell GM (1975) Necessary and sufficient conditions for chemotactic bands. Math Biosci 27(3/4):309–317 MR 0411681 (53 #15411)

    Article  MathSciNet  MATH  Google Scholar 

  • Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30(2):225–234

    Article  MATH  Google Scholar 

  • Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30(2):235–248

    Article  MATH  Google Scholar 

  • Kim Y-J, Kwon O (2014) Global asymptotic stability and the ideal free distribution in a starvation driven diffusion. J Math Biol 68(6):1341–1370 MR 3189110

    Article  MathSciNet  MATH  Google Scholar 

  • Kim Y-J, Kwon O (2016) Evolution of dispersal with starvation measure and coexistence. Bull Math Biol 78(2):254–279

    Article  MathSciNet  MATH  Google Scholar 

  • Kin Y-J, Kwon O, Li F (2013) Evolution of dispersal toward fitness. Bull Math Biol 75(12):2474–2498 MR 3128024

    Article  MathSciNet  MATH  Google Scholar 

  • Lapidus JR, Schiller R (1978) A model for traveling bands of chemotactic bacteria. Biophys J 22:1–13

    Article  Google Scholar 

  • Li T, Wang Z-A (2012) Steadily propagating waves of a chemotaxis model. Math Biosci 240(2):161–168 MR 3000369

    Article  MathSciNet  MATH  Google Scholar 

  • Lui R, Wang ZA (2010) Traveling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol 61(5):739–761 MR 2684162 (2011m:92019)

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal MP Brenner N, Budrene EO, Oudenaarden A van (2003) Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc Natl Acad Sci USA 100(23):13259–13263

    Article  Google Scholar 

  • Othmer HG, Hillen T (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. J Theor Biol 79:83–99

    Article  MathSciNet  Google Scholar 

  • Tindall MJ, Maini PK, Porter SL, Armitage JP (2008a) Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull Math Biol 70(6):1570–1607 MR 2430318 (2009i:92012b)

    Article  MathSciNet  MATH  Google Scholar 

  • Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008b) Overview of mathematical approaches used to model bacterial chemotaxis. I. The single cell. Bull Math Biol 70(6):1525–1569 MR 2430317 (2009i:92012a)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z-A (2013) Mathematics of traveling waves in chemotaxis—review paper. Discrete Contin Dyn Syst Ser B 18(3):601–641 MR 3007746

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C, Hwang HJ, Painter KJ, Erban R (2011) Travelling waves in hyperbolic chemotaxis equations. Bull Math Biol 73(8):1695–1733 MR 2817814 (2012g:92035)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon C, Kim Y-J (2015) Bacterial chemotaxis without gradient-sensing. J Math Biol 70(6):1359–1380

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon C, Kim Y-J (2016) Global existence with pattern formation in cell aggregation model. Acta Appl Math (accepted)

Download references

Acknowledgements

This research was supported by National Institute for Mathematical Sciences and National Research Foundation of Korea. S-H Choi is partially supported by NRF of Korea (No. 2015R1C1A1A02036611). Authors also thank to anonymous reviewers for valuable comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SH., Kim, YJ. A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves. Bull Math Biol 79, 277–302 (2017). https://doi.org/10.1007/s11538-016-0235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0235-4

Keywords

Navigation