Skip to main content
Log in

Traveling wave solutions from microscopic to macroscopic chemotaxis models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and nonexistence of traveling wave solutions for the one-dimensional microscopic and macroscopic chemotaxis models. The microscopic model is based on the velocity jump process of Othmer et al. (SIAM J Appl Math 57:1044–1081, 1997). The macroscopic model, which can be shown to be the parabolic limit of the microscopic model, is the classical Keller–Segel model, (Keller and Segel in J Theor Biol 30:225–234; 377–380, 1971). In both models, the chemosensitivity function is given by the derivative of a potential function, Φ(v), which must be unbounded below at some point for the existence of traveling wave solutions. Thus, we consider two examples: \({\Phi(v) = \ln v}\) and \({\Phi(v) = \ln[v/(1-v)]}\). The mathematical problem reduces to proving the existence or nonexistence of solutions to a nonlinear boundary value problem with variable coefficient on \({\mathbb R}\). The main purpose of this paper is to identify the relationships between the two models through their traveling waves, from which we can observe how information are lost, retained, or created during the transition from the microscopic model to the macroscopic model. Moreover, the underlying biological implications of our results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153: 708–716

    Article  Google Scholar 

  • Alt W (1980) Biased random walk model for chemotaxis and related diffusion approximation. J Math Biol 9: 147–177

    Article  MATH  MathSciNet  Google Scholar 

  • Brown D, Berg H (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Sci 71(4): 1388–1392

    Article  Google Scholar 

  • Eisenbach M (2004) Chemotaxis. Imperial College Press, London

    Google Scholar 

  • Erban R, Othmer H (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2): 361–391

    Article  MATH  MathSciNet  Google Scholar 

  • Hillen T, Painter K (2009) A user’s guide to pde models for chemotaxis. J Math Biol 58: 183–217

    Article  MATH  MathSciNet  Google Scholar 

  • Horstmann D (2003) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresberichte der DMV 105(3): 103–165

    MATH  MathSciNet  Google Scholar 

  • Horstmann D (2004) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresberichte der DMV 106(2): 51–69

    MATH  MathSciNet  Google Scholar 

  • Horstmann D, Stevens A (2004) A constructive approach to travelling waves in chemotaxis. J Nonlinear Sci 14: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  • Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewd as an instability. J Theor Biol 26: 399–415

    Article  Google Scholar 

  • Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30: 225–234

    Article  Google Scholar 

  • Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30: 235–248

    Article  Google Scholar 

  • Kolmogorov AN, Petrovskii IG, Piskunov NS (1937) A study of the equation of diffusion with inrcease in the quantity of matter, and its application to a biological problem. Bjol Moskovskovo Gos Univ 17: 1–72

    Google Scholar 

  • Lapidus R, Schiller R (1976) Model for the chemotactic response of a bacterial population. Biophys J 16: 779–789

    Article  Google Scholar 

  • Othmer H, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263–298

    Article  MATH  MathSciNet  Google Scholar 

  • Othmer H, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62(4): 1122–1250

    Article  MathSciNet  Google Scholar 

  • Othmer H, Stevens A (1997) Aggregation, blowup and collapse: the ABC’s of taxis in reinforced random walks. SIAM J Appl Math 57: 1044–1081

    Article  MATH  MathSciNet  Google Scholar 

  • Parent CA (2004) Making all the right moves: chemotaxis in neutrophils and dictyostelium. Curr Opin Cell Biol 16: 4–13

    Article  Google Scholar 

  • Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15: 311–338

    Article  MathSciNet  Google Scholar 

  • Rosen D (1976) Existence and nature of band solutions to generic chemotactic transport equations. J Theor Biol 59: 243–246

    Article  Google Scholar 

  • Tindall MJ, Maini PK, Porter SL, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6): 1570–1607

    Article  MATH  MathSciNet  Google Scholar 

  • Wang ZA (2009) Connections between microscopic and macroscopic models for chemotaxis. SIAM J Math Anal (in review)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi An Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, R., Wang, Z.A. Traveling wave solutions from microscopic to macroscopic chemotaxis models. J. Math. Biol. 61, 739–761 (2010). https://doi.org/10.1007/s00285-009-0317-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0317-0

Keywords

Mathematics Subject Classification (2000)

Navigation