Skip to main content
Log in

A Comparison Between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the last 10 years, the number of field applications of zero-valent iron differing from permeable reactive barrier has grown rapidly and at present are 112. This study analyzes and compares such field applications. By using statistical analysis, especially ANOVA and principal component analysis, this study shows that chlorinated solvent contamination can be treated efficiently by using zero-valent iron material singly or associated with other technologies. In the analyzed sample of case studies, the association with microbial dechlorination increased significantly the performances of nanoscale iron. This is likely due to the synergistic effect between the two processes. Millimetric iron was always used in association with source zone containment; therefore, it is not possible to distinguish the contributions of the two techniques. The comparison also shows that catalyst addition seems to not dramatically improve treatment efficiency and that such improvement is not statistically significant. Finally, the injection technology is correlated to the type of iron and to the soil permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Christ, J. A., Ramsburg, A., Abriola, L., Pennell, K., & Löffler, F. (2005). Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. Environmental Health Perspectives, 113, 465–477.

    Article  CAS  Google Scholar 

  • Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43, 3717–3726.

    Article  CAS  Google Scholar 

  • Davidson, B., Spanos, T., & Zschuppe, R. (2004). Pressure pulse technology: an enhanced fluid flow and delivery mechanism. Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA.

  • Della Vecchia, E., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43, 8942–8947.

    Article  Google Scholar 

  • Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958–967.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. Y. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. Y. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41, 6216–6221.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D. Y., Liu, J. C., & Roberts, C. B. (2007). Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research, 46, 29–34.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2009). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.

    Article  Google Scholar 

  • Hong, Y., Honda, R. J., Myung, N. V., & Walker, S. L. (2009). Transport of iron-based nanoparticles: role of magnetic properties. Environmental Science & Technology, 43, 8834–8839.

    Article  CAS  Google Scholar 

  • Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., & Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environmental Science & Technology, 41, 6418–6424.

    Article  CAS  Google Scholar 

  • Johnson, T. L., Scherer, M. M., & Tratnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 30, 2634–2640.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Johnson, G. O. B., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science & Technology, 43, 5455–5460.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Nepal, D., Manning, B., & Choi, H. (2007). Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research, 9, 725–735.

    Article  CAS  Google Scholar 

  • Keane E (2009) Fate, transport, and toxicity of nanoscale zero-valent iron (nZVI) used during superfund remediation. US Environmental Protection Agency.

  • Kim, H.-J., Phenrat, T., Tilton, R. D. & Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environmental Science & Technology, 43, 3824–3830.

    Article  CAS  Google Scholar 

  • Kueper, B. H., Wealthall, G. P., Smith, J. W. N., Leharne, S. A., & Lerner, D. N. (2003). In E. Agency (Ed.), An illustrated handbook of DNAPL transport and fate in the subsurface (pp. 1–67). Bristol: Environment Agency.

    Google Scholar 

  • Kutzner, C. (1996). Grouting of rock and soil. Rotterdam: Balkema.

  • Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.

    Article  CAS  Google Scholar 

  • Lien, H. L., & Zhang, W. X. (2007). Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Applied Catalysis B, Environmental, 77, 110–116.

    Article  CAS  Google Scholar 

  • Liu, Y. Q., Choi, H., Dionysiou, D., & Lowry, G. V. (2005). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17, 5315–5322.

    Article  CAS  Google Scholar 

  • Loffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17, 274–284.

    Article  Google Scholar 

  • Lowry, G. V., Saleh, N., Sirk, K., Phenrat, T., Dufour, B., Matyjaszewski, K., & Tilton, R. D. (2006). Triblock copolymer coatings enhances nanoiron transport and localizes nanoiron at the DNAPL/water interface. Division of Geochemistry, 231st ACS National Meeting, Atlanta, GA, March 26–30, 2006.

  • Mace, C. (2006). Controlling groundwater VOCs: do nanoscale ZVI particles have any advantages over microscale ZVI or BNP? Pollution Engineering, 38, 24–27.

    CAS  Google Scholar 

  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28, 2045–2053.

    Article  CAS  Google Scholar 

  • Müller, N., & Nowack, B. (2010). Nano zero valent iron – THE solution for water and soil remediation?. Report of workshop held in Zurich (Switzerland), November 24th 2009. At: http://www.observatorynano.eu/project/filesystem/files/nZVI_final_vsObservatory.pdf.

  • Royal Society (2005). Report of workshop on potential health, environmental, and societal impacts of nanotechnologies. London, 25 November 2005.

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., et al. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y. Q., Phenrat, T., Dufour, B., Matyjaszewski, K., et al. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.

    Article  CAS  Google Scholar 

  • Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Scherer, M., Balko, B. A., & Tratnyek, P. G. (1999). The role of oxides in reduction reactions at the metal–water interface. Mineral–water interfacial reactions (pp. 301–322). Washington, DC: American Chemical Society.

    Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.

    Article  CAS  Google Scholar 

  • Sirk, K. M., Saleh, N. B., Phenrat, T., Kim, H.-J., Dufour, B., Ok, J., Golas, P. L., Matyjaszewski, K., Lowry, G. V., & Tilton, R. D. (2009). Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environmental Science & Technology, 43, 3803–3808.

    Google Scholar 

  • Sun, Y. P., Li, X. Q., Zhang, W. X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 308, 60–66.

    Article  CAS  Google Scholar 

  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.

    Article  CAS  Google Scholar 

  • Tiraferri, A., Chen, K. L., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.

    Article  Google Scholar 

  • United States Environmental Protection Agency (2010) Contaminated site clean-up information. Available at http://www.cluin.org.

  • US EPA (1997). Analysis of selected enhancements for soil vapor extraction. Contract Report: EPA-542-R-97-007. At: http://207.86.51.66/download/remed/sveenhmt.pdf.

  • US EPA (2005). Nanotechnology Workgroup / EPA's Science Policy Council. Nanotechnology White Paper, 68-70, US Environmental Protection Agency. December 2, 2005. At: http://www.epa.gov/OSA/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf.

  • Wang, J., & Farrell, J. (2003). Investigating the role of atomic hydrogen on chloroethene reactions with iron using Tafel analysis and electrochemical impedance spectroscopy. Environmental Science & Technology, 37, 3891–3896.

    Article  CAS  Google Scholar 

  • Xiu, Z. M., Jin, Z. H., Li, T. L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. J. (2009). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted under the CIPE-C30 project funded by Regione Piemonte (Italy) and partially supported by the Lagrange Grant from Fondazione C.R.T. (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Comba.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comba, S., Di Molfetta, A. & Sethi, R. A Comparison Between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers. Water Air Soil Pollut 215, 595–607 (2011). https://doi.org/10.1007/s11270-010-0502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0502-1

Keywords

Navigation