Skip to main content
Log in

Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2–10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min−1) containing 0.2, 0.5 and 1.0 mg L−1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min−1) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41(8):1307–1311

    Article  CAS  Google Scholar 

  • Choi H, Lim H, Kim J, Hwang T, Kang J (2002) Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation. J Cont Hydro 57(1–2):81–98

    Article  CAS  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946

    Article  CAS  Google Scholar 

  • Dai Y, Li F, Ge F, Zhu F, Wu L, Yang X (2006) Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. J Haz Mat 137(3):1424–1429

    Article  CAS  Google Scholar 

  • Elimelech M (1994) Effect of particle size on the kinetics of particle deposition under attractive double layer interactions. J Col Interf Sci 164(1):190–199

    Article  CAS  Google Scholar 

  • Elliott DW, Zhang W-X (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    Article  CAS  Google Scholar 

  • Farrell J, Wang J, O’Day P, Coklin M (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ Sci Technol 35(10):2026–2032

    Article  CAS  Google Scholar 

  • Ferguson JF, Gavis J (1972) Review of the arsenic cycle in natural waters. Water Res 6(11):1259–1274

    Article  CAS  Google Scholar 

  • Fiedor JN, Bostick WD, Jarabek RJ, Farrell J (1998) Understanding the mechanism of uranium removal from groundwater by zero-valent iron using x-ray photoelectron spectroscopy. Environ Sci Technol 32(10):1466–1473

    Article  CAS  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320

    Article  CAS  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  Google Scholar 

  • Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38(7):2242–2247

    Article  CAS  Google Scholar 

  • Kanel SR, Grenèche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of Arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    Article  CAS  Google Scholar 

  • Kanel SR, Neppolian B, Choi H, Yang JW (2003) Heterogeneous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: kinetics, mechanism and implication. Soil and Sediment Contamination 12(1):101–117

    CAS  Google Scholar 

  • Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39(9):1729–1740

    CAS  Google Scholar 

  • Li L, Fan M, Brown RC, Leeuwen JV, Wang J, Wang W, Song Y, Zhang P (2006) Synthesis, properties and environmental applications of nanoscale iron-based materials: A review. Crit Rev Environ Sci Technol 36(5):405–431

    Article  CAS  Google Scholar 

  • Lowry GV, Johnson KM (2004) Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution. Environ Sci Technol 38 (19):5208–5216

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf SE, Goldberg S (1998) Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environ Sci Technol 32(16):2383–2388

    Article  CAS  Google Scholar 

  • Manning BA, Hunt M, Amrhein C, Yarmoff JA (2002) Arsenic(III) and Arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36(24):5455–5461

    Article  CAS  Google Scholar 

  • Nepal D, Geckeler KE (2006) pH-sensitive dispersion and debundling of single-walled carbon nanotubes: Lysozyme as a tool. Small 2(3):406–412

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  CAS  Google Scholar 

  • O’Hena S, Krug T, Quinn J, Clausen C, Geiger C (2006) Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation 16(2):35–56

    Article  Google Scholar 

  • Pileni M-P (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mat 2(3):145–150

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JC, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569

    Article  CAS  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318

    Article  CAS  Google Scholar 

  • Rajagopalan R, Tien C (1976) Trajectory analysis of deep-bed filtration with sphere-in-cell porous-media model. AIChE J 22(3):523–533

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35(7):1487–1492

    Article  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration on saturated porous media. Environ Sci Technol 38(2):529–536

    Article  CAS  Google Scholar 

  • Wang CB, Zhang W (1997a) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31 (7):2154–2156

    Article  CAS  Google Scholar 

  • Yao KM, Habibian MT, O’Melia CR (1971) Water and waste water filtration: concepts and applications. Environ Sci Technol 5(11):1105–1112

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nano scale iron particles for environmental remediation: an overview. J Nanoparticle Res 5(3–4):323–332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Laboratory Program by the Korea Science and Engineering Foundation. This work was also supported by a Research Corporation Cottrell College Science Award grant (CC5444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heechul Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanel, S.R., Nepal, D., Manning, B. et al. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9, 725–735 (2007). https://doi.org/10.1007/s11051-007-9225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9225-7

Keywords

Navigation