Skip to main content
Log in

Hierarchical control of two-dimensional gaze saccades

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Coordinating the movements of different body parts is a challenging process for the central nervous system because of several problems. Four of these main difficulties are: first, moving one part can move others; second, the parts can have different dynamics; third, some parts can have different motor goals; and fourth, some parts may be perturbed by outside forces. Here, we propose a novel approach for the control of linked systems with feedback loops for each part. The proximal parts have separate goals, but critically the most distal part has only the common goal. We apply this new control policy to eye-head coordination in two-dimensions, specifically head-unrestrained gaze saccades. Paradoxically, the hierarchical structure has controllers for the gaze and the head, but not for the eye (the most distal part). Our simulations demonstrate that the proposed control structure reproduces much of the published empirical data about gaze movements, e.g., it compensates for perturbations, accurately reaches goals for gaze and head from arbitrary initial positions, simulates the nine relationships of the head-unrestrained main sequence, and reproduces observations from lesion and single-unit recording experiments. We conclude by showing how our model can be easily extended to control structures with more linked segments, such as the control of coordinated eye on head on trunk movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. One simplification here is that we ignore internal noise in the system, e.g., Harris and Wolpert (1998) showed that optimal control of a system with signal-dependent noise can reproduce the speed-accuracy trade-off for saccades. As we are dealing with rejection of perturbations in linked systems, internal noise is not our primary concern.

  2. To cancel its VOR, the monkey looked at a head-fixed target while sitting on a rotating chair that oscillated sinusoidally

References

  • Aizawa, H., & Wurtz, R. (1998). Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory. Journal of Neurophysiology, 79(4), 2082–2096.

    CAS  PubMed  Google Scholar 

  • Anastasopoulos, D., Ziavra, N., Hollands, M., Bronstein, A. (2009). Gaze displacement and inter-segmental coordination during large whole body voluntary rotations. Experimental Brain Research, 193(3), 323–336.

    Article  PubMed  Google Scholar 

  • Bahill, A., Clark, M., Stark, L. (1975). The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 24(3–4), 191–204.

    Article  Google Scholar 

  • Bechara, B., & Gandhi, N. (2010). Matching the oculomotor drive during head-restrained and head-unrestrained gaze shifts in monkey. Journal of Neurophysiology, 104(2), 811–828.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bizzi, E. (1979). Strategies of eye-head coordination. Progress in Brain Research, 50, 795–803.

    Article  CAS  PubMed  Google Scholar 

  • Bizzi, E., Kalil, R., Tagliasco, V. (1971). Eye-head coordination in monkeys: evidence for centrally patterned organization. Science, 173(3995), 452–454.

    Article  CAS  PubMed  Google Scholar 

  • Boulanger, M., Galiana, H., Guitton, D. (2012). Human eye-head gaze shifts preserve their accuracy and spatiotemporal trajectory profiles despite long-duration torque perturbations that assist or oppose head motion. Journal of Neurophysiology, 108(1), 39–56.

    Article  PubMed  Google Scholar 

  • Cannon, S., & Robinson, D. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. Journal of Neurophysiology, 57(5), 1383–1409.

    CAS  PubMed  Google Scholar 

  • Cheron, G., & Godaux, E. (1987). Disabling of the oculomotor neural integrator by kainic acid injections in the prepositus-vestibular complex of the cat. The Journal of physiology, 394(1), 267–290.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, W., & Guitton, D. (2006). Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control. Neuron, 50(3), 491–505.

    Article  CAS  PubMed  Google Scholar 

  • Chun, K.S., & Robinson, D. (1978). A model of quick phase generation in the vestibuloocular reflex. Biological Cybernetics, 28(4), 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Collins, C., & Barnes, G. (1999). Independent control of head and gaze movements during head-free pursuit in humans. The Journal of Physiology, 515(1), 299–314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corneil, B., Olivier, E., Munoz, D. (2002). Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. Journal of Neurophysiology, 88(4), 2000–2018.

    PubMed  Google Scholar 

  • Corriou, J. (2004). Process control: theory and applications. London: Springer-Verlag. ISBN:1-85233-776-1.

    Book  Google Scholar 

  • Cullen, K., & Roy, J. (2004). Signal processing in the vestibular system during active versus passive head movements. Journal of Neurophysiology, 91(5), 1919–1933.

    Article  PubMed  Google Scholar 

  • Cullen, K., Huterer, M., Braidwood, D., Sylvestre, P. (2004). Time course of vestibuloocular reflex suppression during gaze shifts. Journal of Neurophysiology, 92(6), 3408–3422.

    Article  PubMed  Google Scholar 

  • Dale, A., & Cullen, K.E. (2013). The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion. Journal of Neurophysiology, 109(7), 1900–1911.

    Article  PubMed  Google Scholar 

  • Duhamel, J.R., Colby, C., Goldberg, M. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 90–92.

    Article  CAS  PubMed  Google Scholar 

  • Farshadmanesh, F., Klier, E., Chang, P., Wang, H., Crawford, J. (2007). Three-dimensional eye–head coordination after injection of muscimol into the interstitial nucleus of cajal (inc). Journal of Neurophysiology, 97(3), 2322–2338.

    Article  PubMed  Google Scholar 

  • Freedman, E. (2001). Interactions between eye and head control signals can account for movement kinematics. Biological Cybernetics, 84(6), 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Freedman, E. (2008). Coordination of the eyes and head during visual orienting. Experimental Brain Research, 190(4), 369–387.

    Article  PubMed Central  PubMed  Google Scholar 

  • Freedman, E., & Sparks, D. (1997). Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. Journal of Neurophysiology, 77(5), 2328–2348.

    CAS  PubMed  Google Scholar 

  • Freedman, E., & Sparks, D. (2000). Coordination of the eyes and head: movement kinematics. Experimental Brain Research, 131(1), 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, M. (2005). Feed-forward associative learning for volitional movement control. Neuroscience Research, 52(2), 153–165.

    Article  PubMed  Google Scholar 

  • Fuller, J. (1992). Head movement propensity. Experimental Brain Research, 92(1), 152–164.

    Article  CAS  PubMed  Google Scholar 

  • Galiana, H., & Guitton, D. (1992). Central organization and modeling of eye-head coordination during orienting gaze shifts. Annals of the New York Academy of Sciences, 656(1), 452–471.

    Article  CAS  PubMed  Google Scholar 

  • Galiana, H., & Outerbridge, J. (1984). A bilateral model for central neural pathways in vestibuloocular reflex. Journal of Neurophysiology, 51(2), 210–241.

    CAS  PubMed  Google Scholar 

  • Gandhi, N.J. (2012). Interactions between gaze-evoked blinks and gaze shifts in monkeys. Experimental Brain Research, 216(3), 321–339.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gandhi, N., & Sparks, D. (2007). Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region. Journal of Neurophysiology, 98(1), 360–373.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilchrist, I., Brown, V., Findlay, J. (1997). Saccades without eye movements. Nature, 390(6656), 130–131.

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist, I., Brown, V., Findlay J, Clarke M. (1998). Using the eye–movement system to control the head. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 1831–1836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goffart, L., & Pélisson, D. (1998). Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. I. Gaze dysmetria. Journal of Neurophysiology, 79(4), 1942–1958.

    CAS  PubMed  Google Scholar 

  • Goffart, L., Guillaume, A., Pélisson, D. (1998a). Compensation for gaze perturbation during inactivation of the caudal fastigial nucleus in the head-unrestrained cat. Journal of Neurophysiology, 80(3), 1552–1557.

    CAS  Google Scholar 

  • Goffart, L., Pélisson, D., Guillaume, A. (1998b). Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. II. Dynamics and eye-head coupling. Journal of Neurophysiology, 79(4), 1959–1976.

    CAS  Google Scholar 

  • Goossens, H., & van Opstal, A. (1997). Human eye-head coordination in two dimensions under different sensorimotor conditions. Experimental Brain Research, 114(3), 542–560.

    Article  CAS  PubMed  Google Scholar 

  • Grantyn, A., & Berthoz, A. (1985). Burst activity of identified tecto-reticulo-spinal neurons in the alert cat. Experimental Brain Research, 57(2), 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Guillaume, A., & Pélisson, D. (2001). Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. II. Effect of muscimol inactivation of the caudal fastigial nucleus. European Journal of Neuroscience, 14(8), 1345–1359.

    Article  CAS  PubMed  Google Scholar 

  • Guitton, D. (1992). Control of eye–head coordination during orienting gaze shifts. Trends in Neurosciences, 15(5), 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Guitton, D., & Volle, M. (1987a). Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. Journal of Neurophysiology, 58(3), 427–459.

    CAS  Google Scholar 

  • Guitton, D., & Volle, M. (1987b). Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. Journal of Neurophysiology, 58(3), 427–459.

    CAS  Google Scholar 

  • Guitton, D., Munoz, D., Galiana, H. (1990). Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. Journal of Neurophysiology, 64(2), 509–531.

    CAS  PubMed  Google Scholar 

  • Hanes, D., Smith, M., Optican, L., Wurtz, R. (2005). Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus. Experimental Brain Research, 160(3), 312–325.

    Article  PubMed  Google Scholar 

  • Harris, C., & Wolpert, D. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.

    Article  CAS  PubMed  Google Scholar 

  • Haustein, W. (1989). Considerations on listing’s law and the primary position by means of a matrix description of eye position control. Biological Cybernetics, 60(6), 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Isa, T., & Sasaki, S. (2002). Brainstem control of head movements during orienting; organization of the premotor circuits. Progress in Neurobiology, 66(4), 205–242.

    Article  PubMed  Google Scholar 

  • Jürgens, R., Becker, W., Kornhuber, H. (1981). Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biological Cybernetics, 39(2), 87–96.

    Article  PubMed  Google Scholar 

  • Kardamakis, A., & Moschovakis, A. (2009). Optimal control of gaze shifts. The Journal of Neuroscience, 29(24), 7723–7730.

    Article  CAS  PubMed  Google Scholar 

  • Kardamakis, A., Grantyn, A., Moschovakis, A. (2010). Neural network simulations of the primate oculomotor system. v. eye–head gaze shifts. Biological Cybernetics, 102(3), 209–225.

    Article  CAS  PubMed  Google Scholar 

  • Kase, M., Miller, D., Noda, H. (1980). Discharges of purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. The Journal of Physiology, 300(1), 539–555.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato, R., Grantyn, A., Dalezios, Y., Moschovakis, A. (2006). The local loop of the saccadic system closes downstream of the superior colliculus. Neuroscience, 143(1), 319–337.

    Article  CAS  PubMed  Google Scholar 

  • Keller, E., et al. (1974). Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology, 37(2), 316–332.

    CAS  PubMed  Google Scholar 

  • Klier, E., Wang, H., Constantin, A., Crawford, J. (2002). Midbrain control of three-dimensional head orientation. Science, 295(5558), 1314–1316.

    Article  CAS  PubMed  Google Scholar 

  • Land, M. (2004). The coordination of rotations of the eyes, head and trunk in saccadic turns produced in natural situations. Experimental Brain Research, 159(2), 151–160.

    Article  PubMed  Google Scholar 

  • Land, M. (2009). Vision, eye movements, and natural behavior. Visual Neuroscience, 26(1), 51–62.

    Article  PubMed  Google Scholar 

  • Laurutis, V., & Robinson, D. (1986). The vestibulo-ocular reflex during human saccadic eye movements. The Journal of Physiology, 373(1), 209–233.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefèvre, P., & Galiana, H. (1992). Dynamic feedback to the superior colliculus in a neural network model of the gaze control system. Neural Networks, 5(6), 871–890.

    Article  Google Scholar 

  • Lefèvre, P., Bottemanne, I., Roucoux, A. (1992). Experimental study and modeling of vestibulo-ocular reflex modulation during large shifts of gaze in humans. Experimental Brain Research, 91(3), 496–508.

    Article  PubMed  Google Scholar 

  • Lefèvre, P., Quaia, C., Optican, L. (1998). Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks, 11(7–8), 1175–1190.

    Article  PubMed  Google Scholar 

  • Liao, K., Kumar, A., Han, Y., Grammer, V., Gedeon, B., Leigh, R. (2005). Comparison of velocity waveforms of eye and head saccades. Annals of the New York Academy of Sciences, 1039(1), 477–479.

    Article  PubMed  Google Scholar 

  • Luschei, E.S., & Fuchs, A.F. (1972). Activity of brain stem neurons during eye movements of alert monkeys. Journal of Neurophysiology, 35(4), 445-461.

    CAS  PubMed  Google Scholar 

  • Mays, L., & Sparks, D. (1980). Saccades are spatially, not retinocentrically, coded. Science, 208, 1163–1165.

    Article  CAS  PubMed  Google Scholar 

  • McFarland, J., & Fuchs, A. (1992). Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. Journal of Neurophysiology, 68(1), 319–332.

    CAS  PubMed  Google Scholar 

  • Mottolese, C., Richard, N., Harquel, S., Szathmari, A., Sirigu, A., Desmurget, M. (2013). Mapping motor representations in the human cerebellum. Brain, 136, 330–342.

    Article  PubMed  Google Scholar 

  • Munoz, D., & Guitton, D. (1985). Tectospinal neurons in the cat have discharges coding gaze position error. Brain Research, 341(1), 184–188.

    Article  CAS  PubMed  Google Scholar 

  • Munoz, D., & Guitton, D. (1986). Presaccadic burst discharges of tecto-reticulo-spinal neurons in the alert head-free and-fixed cat. Brain Research, 398(1), 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Optican, L. (2005). Sensorimotor transformation for visually guided saccades. Annals of the New York Academy of Sciences, 1039(1), 132–148.

    Article  PubMed  Google Scholar 

  • Optican, L. (2009). Oculomotor system: models. In Encyclopedia of neuroscience (pp. 25–34). Oxford: Academic.

  • Optican, L., & Quaia, C. (2002). Distributed model of collicular and cerebellar function during saccades. Annals of the New York Academy of Sciences, 956(1), 164–177.

    Article  PubMed  Google Scholar 

  • Optican, L., & Robinson, D. (1980). Cerebellar-dependent adaptive control of primate saccadic system. Journal of Neurophysiology, 44(6), 1058–1076.

    CAS  PubMed  Google Scholar 

  • Paré, M., & Guitton, D. (1998). Brain stem omnipause neurons and the control of combinedeye-head gaze saccades in the alert cat. Journal of Neurophysiology, 79(6), 3060–3076.

    PubMed  Google Scholar 

  • Pélisson, D., Guitton, D., Munoz, D. (1989). Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Experimental Brain Research, 78(3), 654–658.

    Article  PubMed  Google Scholar 

  • Pélisson, D., Goffart, L., Guitton, D. (1995). On-line compensation of gaze shifts perturbed by micro-stimulation of the superior colliculus in the cat with unrestrained head. Experimental Brain Research, 106(2), 196–204.

    Article  PubMed  Google Scholar 

  • Pélisson, D., Goffart, L., Guillaume, A. (1998). Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat. Journal of Neurophysiology, 80(3), 1180–1196.

    PubMed  Google Scholar 

  • Pélisson, D., Goffart, L., Guillaume, A., Quinet, J. (2003). Visuo-motor deficits induced by fastigial nucleus inactivation. The Cerebellum, 2(1), 71–76.

    Article  PubMed  Google Scholar 

  • Peng, G., Hain, T., Peterson, B. (1996). A. dynamical model for reflex activated head movements in the horizontal plane. Biological Cybernetics, 75(4), 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Prsa, M., & Galiana, H. (2007). Visual-vestibular interaction hypothesis for the control of orienting gaze shifts by brain stem omnipause neurons. Journal of Neurophysiology, 97(2), 1149–1162.

    Article  PubMed  Google Scholar 

  • Quaia, C., & Optican, L. (1998). Commutative saccadic generator is sufficient to control a 3-d ocular plant with pulleys. Journal of Neurophysiology, 79(6), 3197–3215.

    CAS  PubMed  Google Scholar 

  • Quaia, C., Aizawa, H., Optican, L., Wurtz, R. (1998). Reversible inactivation of monkey superior colliculus. II. Maps of saccadic deficits. Journal of Neurophysiology, 79(4), 2097–2110.

    CAS  PubMed  Google Scholar 

  • Quaia, C., Lefèvre, P., Optican, L. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology, 82(2), 999–1018.

    CAS  PubMed  Google Scholar 

  • Robinson, D.A. (1975). Oculomotor control signals. In G. Lennerstand & P. Bach-y-Rita (Eds.), Basic mechanisms of ocular motility and their clinical implications (Vol. 24, pp. 337–374). Pergamon Press.

  • Robinson, F., Straube, A., Fuchs, A. (1993). Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. Journal of Neurophysiology, 70(5), 1741–1758.

    CAS  PubMed  Google Scholar 

  • Rottach, K., Das, V., Wohlgemuth, W., Zivotofsky, A., Leigh, R. (1998). Properties of horizontal saccades accompanied by blinks. Journal of Neurophysiology, 79(6), 2895–2902.

    CAS  PubMed  Google Scholar 

  • Roy, J., & Cullen, K. (1998). A neural correlate for vestibulo-ocular reflex suppression during voluntary eye-head gaze shifts. Nature Neuroscience, 1(5), 404–10.

    Article  CAS  PubMed  Google Scholar 

  • Schiller, P., True, S., Conway, J. (1979). Effects of frontal eye field and superior colliculus ablations on eye movements. Science, 206(4418), 590–592.

    Article  CAS  PubMed  Google Scholar 

  • Schiller, P., True, S., Conway, J. (1980). Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology, 44(6), 1175–1189.

    CAS  PubMed  Google Scholar 

  • Schweighofer, N., Arbib, M., Dominey, P. (1996). A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biological Cybernetics, 75(1), 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Scudder, C., Kaneko, C., Fuchs, A. (2002). The brainstem burst generator for saccadic eye movements. A modern synthesis. Experimental Brain Research, 142(4), 439–462.

    Article  PubMed  Google Scholar 

  • Sparks, D., & Travis, R. (1971). Firing patterns of reticular formation neurons during horizontal eye movements. Brain Research, 33(2), 477.

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre, P., & Cullen, K. (2006). Premotor correlates of integrated feedback control for eye–head gaze shifts. The Journal of Neuroscience, 26(18), 4922–4929.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, R., & Bahra, P. (1986a). Combined eye-head gaze shifts in the primate. I. Metrics. Journal of Neurophysiology, 56(6), 1542–1557.

    CAS  Google Scholar 

  • Tomlinson, R., & Bahra, P. (1986b). Combined eye-head gaze shifts in the primate. II. Interactions between saccades and the vestibuloocular reflex. Journal of Neurophysiology, 56(6), 1558–1570.

    CAS  Google Scholar 

  • Tweed, D. (1997). Three-dimensional model of the human eye-head saccadic system. Journal of Neurophysiology, 77(2), 654–666.

    CAS  PubMed  Google Scholar 

  • Viviani, P., & Berthoz, A. (1975). Dynamics of the head-neck system in response to small perturbations: analysis and modeling in the frequency domain. Biological Cybernetics, 19(1), 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Walton, M., Bechara, B., Gandhi, N. (2008). Effect of reversible inactivation of superior colliculus on head movements. Journal of Neurophysiology, 99(5), 2479–2495.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zangemeister, W., Lehman, S., Stark, L. (1981). Simulation of head movement trajectories: model and fit to main sequence. Biological Cybernetics, 41(1), 19–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Dr. N. J. Gandhi for kindly providing the data points used to make our Fig. 5 and 6.

Drs. Optican and Daye were supported by the Intramural Research Program of the National Eye Institute.

Dr. Blohm has been supported by the National Science and Engineering Research Council (Canada), the Ontario Research Fund (Canada), the Canadian Foundation for Innovation (Canada) and the Botterell Foundation (Queens University, Kingston, ON, Canada).

Dr. Lefevre has been supported by Fonds National de la Recherche Scientifique, Action de Recherche Concertée (Belgium). This paper presents research results of the Belgian Network Dynamical Systems, Control and Optimization, funded by the Interuniversity Attraction Poles Programmes, initiated by the Belgian State, Science Policy Office.

Conflict of interests

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre M. Daye.

Additional information

Action Editor: Simon R Schultz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daye, P.M., Optican, L.M., Blohm, G. et al. Hierarchical control of two-dimensional gaze saccades. J Comput Neurosci 36, 355–382 (2014). https://doi.org/10.1007/s10827-013-0477-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0477-1

Keywords

Navigation