Skip to main content
Log in

A Neural Model of Coordinated Head and Eye Movement Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Gaze shifts require the coordinated movement of both the eyes and the head in both animals and humanoid robots. To achieve this the brain and the robot control system needs to be able to perform complex non-linear sensory-motor transformations between many degrees of freedom and resolve the redundancy in such a system. In this article we propose a hierarchical neural network model for performing 3-D coordinated gaze shifts. The network is based on the PC/BC-DIM (Predictive Coding/Biased Competition with Divisive Input Modulation) basis function model. The proposed model consists of independent eyes and head controlled circuits with mutual interactions for the appropriate adjustment of coordination behaviour. Based on the initial eyes and head positions the network resolves redundancies involved in 3-D gaze shifts and produces accurate gaze control without any kinematic analysis or imposing any constraints. Furthermore the behaviour of the proposed model is consistent with coordinated eye and head movements observed in primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, G.: Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets. J. Physiol. 287(1), 127–147 (1979)

    Article  Google Scholar 

  2. Blakemore, C., Donaghy, M.: Co-ordination of head and eyes in the gaze changing behaviour of cats. J. Physiol. 300(1), 317–335 (1980)

    Article  Google Scholar 

  3. Constantin, A., Wang, H., Monteon, J., Martinez-Trujillo, J., Crawford, J.: 3-dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex. Neuroscience 164(3), 1284–1302 (2009)

    Article  Google Scholar 

  4. Crawford, J., Martinez-Trujillo, J., Klier, E.: Neural control of three-dimensional eye and head movements. Curr. Opin. Neurobiol. 13(6), 655–662 (2003)

    Article  Google Scholar 

  5. Crawford, J.D., Ceylan, M.Z., Klier, E.M., Guitton, D.: Three-dimensional eye-head coordination during gaze saccades in the primate. J. Neurophysiol. 81(4), 1760–1782 (1999)

    Google Scholar 

  6. De Meyer, K., Spratling, M.W.: Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function, vol. 23 (2011)

  7. Freedman, E.G.: Interactions between eye and head control signals can account for movement kinematics. Biol. Cybern. 84(6), 453–462 (2001)

    Article  Google Scholar 

  8. Freedman, E.G., Sparks, D.L.: Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol. 77(5), 2328–2348 (1997)

    Google Scholar 

  9. Freedman, E.G., Sparks, D.L.: Coordination of the eyes and head: movement kinematics. Exp. Brain Res. 131(1), 22–32 (2000)

    Article  Google Scholar 

  10. Galiana, H., Guitton, D.: Central organization and modeling of eye-head coordination during orienting gaze shiftsa. Ann. N. Y. Acad. Sci. 656(1), 452–471 (1992)

    Article  Google Scholar 

  11. Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233, 1416–9 (1986)

    Article  Google Scholar 

  12. Glenn, B., Vilis, T.: Violations of listing’s law after large eye and head gaze shifts. J. Neurophysiol. 68(1), 309–318 (1992)

    Google Scholar 

  13. Goossens, H.H., Van Opstal, A.: Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res. 114(3), 542–560 (1997)

    Article  Google Scholar 

  14. Gresty, M.: Coordination of head and eye movements to fixate continuous and intermittent targets. Vis. Res. 14(6), 395–403 (1974)

    Article  Google Scholar 

  15. Guitton, D.: Control of eye-head coordination during orienting gaze shifts. Trends Neurosci. 15(5), 174–179 (1992)

    Article  Google Scholar 

  16. Guitton, D., Douglas, R., Volle, M.: Eye-head coordination in cats. J. Neurophysiol. 52(6), 1030–1050 (1984)

    Google Scholar 

  17. Guitton, D., Munoz, D.P., Galiana, H.L.: Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol. 64(2), 509–531 (1990)

    Google Scholar 

  18. Guitton, D., Volle, M.: Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. J. Neurophysiol. 58(3), 427–459 (1987)

    Google Scholar 

  19. Huang, Y., Rao, R.P.N.: Predictive coding. WIREs Cognit. Sci. 2, 580–93 (2011). doi:10.1002/wcs.142

    Article  Google Scholar 

  20. Kardamakis, A.A., Moschovakis, A.K.: Optimal control of gaze shifts. J. Neurosci. 29(24), 7723–7730 (2009)

    Article  Google Scholar 

  21. Klier, E.M., Wang, H., Crawford, J.D.: The superior colliculus encodes gaze commands in retinal coordinates. Nat. Neurosci. 4(6), 627–632 (2001)

    Article  Google Scholar 

  22. Klier, E.M., Wang, H., Crawford, J.D.: Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. J. Neurophysiol. 89(5), 2839–2853 (2003)

    Article  Google Scholar 

  23. Laurutis, V., Robinson, D.: The vestibulo-ocular reflex during human saccadic eye movements. J. Physiol. 373(1), 209–233 (1986)

    Article  Google Scholar 

  24. Law, J., Shaw, P., Lee, M.: A biologically constrained architecture for developmental learning of eye–head gaze control on a humanoid robot. Auton. Robot. 35(1), 77–92 (2013)

    Article  Google Scholar 

  25. Lopes, M., Bernardino, A., Santos-Victor, J., Rosander, K., von Hofsten, C.: Biomimetic eye-neck coordination. In: Development and Learning, IEEE 8th International Conference on, pp. 1–8. IEEE (2009)

  26. Maini, E.S., Teti, G., Rubino, M., Laschi, C., Dario, P.: Bio-inspired control of eye-head coordination in a robotic anthropomorphic head. In: Biomedical Robotics and Biomechatronics, The First IEEE/RAS-EMBS International Conference on, pp. 549–554. IEEE (2006)

  27. Maurer, C., Mergner, T., Lücking, C., Becker, W.: Adaptive changes of saccadic eye–head coordination resulting from altered head posture in torticollis spasmodicus. Brain 124(2), 413–426 (2001)

    Article  Google Scholar 

  28. McCluskey, M.K., Cullen, K.E.: Eye, head, and body coordination during large gaze shifts in rhesus monkeys: movement kinematics and the influence of posture. J. Neurosci. 97(4), 2976–2991 (2007)

    Google Scholar 

  29. Medendorp, W., Melis, B., Gielen, C., Van Gisbergen, J.: Off-centric rotation axes in natural head movements: implications for vestibular reafference and kinematic redundancy. J. Neurosci. 79(4), 2025–2039 (1998)

    Google Scholar 

  30. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The icub humanoid robot: An open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS ’08, pp. 50–6. ACM, New York, NY, USA. doi:10.1145/1774674.1774683 (2008)

  31. Milighetti, G., Vallone, L., De Luca, A.: Adaptive predictive gaze control of a redundant humanoid robot head. In: Intelligent Robots and Systems (IROS), IEEE/ RSJ International Conference on, pp. 3192–3198. IEEE (2011)

  32. Misslisch, H., Tweed, D., Vilis, T.: Neural constraints on eye motion in human eye-head saccades. J. Neurosci. 79(2), 859–869 (1998)

    Google Scholar 

  33. Muhammad, W., Spratling, M.W.: A neural model of binocular saccade planning and vergence control. Adapt. Behav. 23(5), 265–282 (2015)

    Article  Google Scholar 

  34. Munoz, D.P., Guitton, D.: Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. ii. sustained discharges during motor preparation and fixation. J. Neurosci. 66(5), 1624–41 (1991)

    Google Scholar 

  35. Munoz, D.P., Guitton, D., Pelisson, D.: Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. iii. spatiotemporal characteristics of phasic motor discharges. J. Neurosci. 66 (5), 1642–1666 (1991)

    Google Scholar 

  36. Niebur, E.: Saliency map. Scholarpedia 2(8), 2675 (2007)

    Article  Google Scholar 

  37. Pelisson, D., Guitton, D., Munoz, D.: Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res. 78(3), 654–658 (1989)

    Article  Google Scholar 

  38. Pelisson, D., Prablanc, C., Urquizar, C.: Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye-head orientation in humans. J. Neurosci. 59(3), 997–1013 (1988)

    Google Scholar 

  39. Phillips, J., Ling, L., Fuchs, A., Siebold, C., Plorde, J.: Rapid horizontal gaze movement in the monkey. J. Neurosci. 73(4), 1632–1652 (1995)

    Google Scholar 

  40. Proudlock, F.A., Shekhar, H., Gottlob, I.: Age-related changes in head and eye coordination. Neurobiol. Aging 25(10), 1377–1385 (2004)

    Article  Google Scholar 

  41. Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects 2(1), 79–87 (1999)

  42. Saeb, S., Weber, C., Triesch, J.: Learning the optimal control of coordinated eye and head movements. PLoS Comput. Biol. 7(11), e1002,253 (2011)

    Article  Google Scholar 

  43. Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic oculomotor control. Adapt. Behav. 9(3-4), 189–207 (2001)

    Article  Google Scholar 

  44. Spratling, M.W.: Predictive coding as a model of biased competition in visual selective attention 48 (12), 1391–408 (2008)

  45. Spratling, M.W.: Reconciling predictive coding and biased competition models of cortical function 2 (4), 1–8 (2008)

  46. Spratling, M.W.: Learning posture invariant spatial representations through temporal correlations 1 (4), 253–63 (2009)

  47. Spratling, M.W.: Classification using sparse representations: a biologically plausible approach 108 (1), 61–73 (2014)

  48. Spratling, M.W.: Predictive coding as a model of cognition. Cogn. Process. (in press)

  49. Spratling, M.W.: A neural implementation of bayesian inference based on predictive coding. submitted (sub.)

  50. Spratling, M.W., De Meyer, K., Kompass, R.: Unsupervised learning of overlapping image components using divisive input modulation 2009(381457), 1–19 (2009)

  51. Srinivasa, N., Grossberg, S.: A head–neck–eye system that learns fault-tolerant saccades to 3-d targets using a self-organizing neural model. Neural Netw. 21(9), 1380–1391 (2008)

    Article  Google Scholar 

  52. Straumann, D., Haslwanter, T., Hepp-Reymond, M.C., Hepp, K.: Listing’s law for eye, head and arm movements and their synergistic control. Exp. Brain Res. 86(1), 209–215 (1991)

    Article  Google Scholar 

  53. Takanishi, A., Matsuno, T., Kato, I.: Development of an anthropomorphic head-eye robot with two eyes-coordinated head-eye motion and pursuing motion in the depth direction. In: Intelligent Robots and Systems, 1997. IROS’97., Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 2, pp. 799–804. IEEE (1997)

  54. Thomson, D., Loeb, G., Richmond, F.: Effect of neck posture on the activation of feline neck muscles during voluntary head turns. J. Neurophysiol. 72(4), 2004–2014 (1994)

    Google Scholar 

  55. Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., Nori, F.: An open-source simulator for cognitive robotics research: The prototype of the icub humanoid robot simulator. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS ’08, pp. 57–61. ACM, New York, NY, USA. doi:10.1145/1774674.1774684 (2008)

  56. Tomlinson, R.: Combined eye-head gaze shifts in the primate. iii. contributions to the accuracy of gaze saccades. J. Neurophysiol. 64(6), 1873–1891 (1990)

    Google Scholar 

  57. Tomlinson, R., Bahra, P.: Combined eye-head gaze shifts in the primate. i. metrics. J. Neurophysiol. 56(6), 1542–1557 (1986)

    Google Scholar 

  58. Tomlinson, R., Bahra, P.: Combined eye-head gaze shifts in the primate. ii. interactions between saccades and the vestibuloocular reflex. J. Neurophysiol. 56(6), 1558–1570 (1986)

    Google Scholar 

  59. Tweed, D.: Three-dimensional model of the human eye-head saccadic system. J. Neurophysiol. 77 (2), 654–666 (1997)

    Google Scholar 

  60. Tweed, D., Glenn, B., Vilis, T.: Eye-head coordination during large gaze shifts. J. Neurophysiol. 73(2), 766–779 (1995)

    Google Scholar 

  61. Winters, J.M., Stark, L.: Muscle models: what is gained and what is lost by varying model complexity. Biol. Cybern. 55(6), 403–420 (1987)

    Article  MathSciNet  Google Scholar 

  62. Zangemeister, W., Lehman, S., Stark, L.: Sensitivity analysis and optimization for a head movement model. Biol. Cybern. 41(1), 33–45 (1981)

    Article  Google Scholar 

  63. Zangemeister, W., Lehman, S., Stark, L.: Simulation of head movement trajectories: model and fit to main sequence. Biol. Cybern. 41(1), 19–32 (1981)

    Article  Google Scholar 

  64. Zangemeister, W., Stark, L.: Types of gaze movement: variable interactions of eye and head movements. Exp. Neurol. 77(3), 563–577 (1982)

    Article  Google Scholar 

  65. Zangemeister, W.H., Stark, L.: Gaze latency: variable interactions of head and eye latency. Exp. Neurol. 75(2), 389–406 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasif Muhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, W., Spratling, M.W. A Neural Model of Coordinated Head and Eye Movement Control. J Intell Robot Syst 85, 107–126 (2017). https://doi.org/10.1007/s10846-016-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0410-8

Keywords

Navigation