Skip to main content
Log in

Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery

  • Method Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Microbial biofilms are mainly studied due to detrimental effects on human health but they are also well established in industrial biotechnology for the production of chemicals. Moreover, biofilm can be considered as a source of novel drugs since the conditions prevailing within biofilm can allow the production of specific metabolites. Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 when grown in biofilm condition produces an anti-biofilm molecule able to inhibit the biofilm of the opportunistic pathogen Staphylococcus epidermidis. In this paper we set up a P. haloplanktis TAC125 biofilm cultivation methodology in automatic bioreactor. The biofilm cultivation was designated to obtain two goals: (1) the scale up of cell-free supernatant production in an amount necessary for the anti-biofilm molecule/s purification; (2) the recovery of P. haloplanktis TAC125 cells grown in biofilm for physiological studies. We set up a fluidized-bed reactor fermentation in which floating polystyrene supports were homogeneously mixed, exposing an optimal air–liquid interface to let bacterium biofilm formation. The proposed methodology allowed a large-scale production of anti-biofilm molecule and paved the way to study differences between P. haloplanktis TAC125 cells grown in biofilm and in planktonic conditions. In particular, the modifications occurring in the lipopolysaccharide of cells grown in biofilm were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Artini M, Papa R, Scoarughi GL, Galano E, Barbato G, Pucci P, Selan L (2013) Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. J Appl Microbiol 114:266–277

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, McCammon SA, Dann AL (2005) Biogeographic and quantitative analyses of abundant uncultivated gamma-proteobacterial clades from marine sediment. Microb Ecol 49:451–460

    Article  CAS  PubMed  Google Scholar 

  • Carillo S, Casillo A, Pieretti G, Parrilli E, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R, Marino G, Parrilli M, Randazzo A, Tutino ML, Corsaro MM (2015) Unique capsular polysaccharide structure from the Psychrophilic Marine Bacterium Colwellia psychrerythraea 34H. J Am Chem Soc 137:179–189

    Article  CAS  PubMed  Google Scholar 

  • Chalabaev S, Chauhan A, Novikov A, Iyer P, Szczesny M, Beloin C, Caroff M, Ghigo JM (2014) Biofilms formed by gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. MBio 19(5):e01116–e01214

    Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    Article  CAS  PubMed  Google Scholar 

  • Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo JM, Cavaillon JM, Adib-Conquy M (2010) Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 16:288–301

    Article  CAS  PubMed  Google Scholar 

  • Corsaro MM, Lanzetta R, Parrilli E, Parrilli M, Tutino ML (2001) Structural investigation on the lipooligosaccharide fraction of psychrophilic Pseudoalteromonas haloplanktis TAC 125 bacterium. Eur J Biochem 268:5092–5097

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589

    Article  PubMed  Google Scholar 

  • Fondi M, Maida I, Perrin E, Mellera A, Mocali S, Parrilli E, Tutino ML, Liò P, Fani R (2015) Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Environ Microb 17:751–766

    Article  CAS  Google Scholar 

  • Galanos C, Lüderitz O, Westphal O (1969) New method for the extraction of R Lipopolysaccharides. Eur J Biochem 9:245–249

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Parrilli E, Ferrer P, Baumann K, Marino G, Tutino ML (2011) Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem 46:953–959

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JA, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Gerke C, Perdreau-Remington F, Götz F (1996) Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS immunolo med microbial 59:432–438

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Medigue C, Krin E, Pascal G et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Glagla S, Danchin A, Schweder T, Marino G, Duilio A (2006) Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 10:483–491

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Artini M, Cellini A, Tilotta M, Galano E, Pucci P, Amoresano A, Selan L (2013a) A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microb Pathog 63:44–53

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Parrilli E, Sannino F, Barbato G, Tutino ML, Artini M, Selan L (2013b) Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 164(5):450–456

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Selan L, Parrilli E, Tilotta M, Sannino F, Feller G, Tutino ML, Artini M (2015) Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa. Microbiol, Front. doi:10.3389/fmicb.2015.01333

    Google Scholar 

  • Parrilli E, Papa R, Carillo S, Tilotta M, Casillo A, Sannino F, Cellini A, Artini M, Selan L, Corsaro MM, Tutino ML (2015) Anti-biofilm activity of Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm: evidence of a signal molecule involvement? Int J Immunopathol Pharmacol 28:104–113

    Article  CAS  PubMed  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334

    Article  PubMed  Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883

    Article  PubMed Central  PubMed  Google Scholar 

  • Pongtharangku T, Demirci A (2007) Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. Appl Microbiol Biotechnol 74:555–662

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T (2009) Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 155:2148–2156

    Article  CAS  PubMed  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    Article  CAS  PubMed  Google Scholar 

  • Szilágyi N, Kovács R, Kenyeres I, Csikor Z (2013) Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes. Water Sci Technol 68:1391–1399

    Article  PubMed  Google Scholar 

  • Tsai CM, Frasch CE (1982) Staining of lipopolysaccharide in SDS polyacrylamide gels using silver staining method. Anal Biochem 119:115–119

    Article  CAS  PubMed  Google Scholar 

  • Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci USA 3:12558–12563

    Article  Google Scholar 

  • Wilmes B, Hartung A, Lalk M, Liebeke M, Schweder T, Neubauer P (2010) Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Fact 9:72

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Programma Nazionale di Ricerche in Antartide 2013/B1.04 Tutino and Programma Operativo Nazionale Ricerca e Competitività 2007–2013 (D. D. Prot. n. 01/Ric. del 18.1.2010)-PON01_01802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermenegilda Parrilli.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parrilli, E., Ricciardelli, A., Casillo, A. et al. Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery. Extremophiles 20, 227–234 (2016). https://doi.org/10.1007/s00792-016-0813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0813-2

Keywords

Navigation