Skip to main content

Advertisement

Log in

Advances in biofilm reactors for production of value-added products

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms are defined as microbial cell layers, which are irreversibly or reversibly attached on solid surfaces. These attached cells are embedded in a self-produced exopolysaccharide matrix, and exhibit different growth and bioactivity compared with suspended cells. With their high biomass density, stability, and potential for long-term fermentation, biofilm reactors are employed for the fermentation and bioconversion, which need large amount of biomass. During the past decade, biofilm reactors have been successfully applied for production of many value-added products. This review article summarizes the applications of biofilm reactors with different novel designs. Advantages and concerns using biofilm reactors, potential uses for industrial-scale production, and further investigation needs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuna ME, Villanueva C, Cardenas B, Christen P, Revah S (2002) The effect of nutrient concentration on biofilm formation on peat and gas phase toluene biodegradation under biofiltration conditions. Proc Biochem 38:7–13

    Article  CAS  Google Scholar 

  • Allan VJM, Callow ME, Macaskie LE, Paterson-Beedle M (2002) Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp. Microbiology 148:277–288

    CAS  Google Scholar 

  • Andrews GF, Fonta JP (1989) A fluidized-bed continuous bioreactor for lactic acid production. Appl Biochem Biotechnol 20–21:375–390

    Article  Google Scholar 

  • Atkinson B (1964) Biochemical reactors. Pion Press, London, UK

    Google Scholar 

  • Atkinson B, Swilley EL (1963) A mathematical model for the trickling filter. In: Proc. 18th Industrial Waste Conference, Purdue University, Lafayatte, IN, pp. 706–737

  • Azeredo J, Visser J, Oliveira R (1999) Exopolymers in bacterial adhesion: Interpretation in terms of DLVO and XDLVO theories. Colloids Surf B Biointerfaces 14:141–148

    Article  CAS  Google Scholar 

  • Bailey JE, Ollis D (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Bayston R (2000) Biofilm infections on implant surfaces. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood academic, Amsterdam, pp 117–131

    Google Scholar 

  • Bober JA, Demirci A (2004) Nisin fermentation by Lactococcus lactis subsp. lactis using plastic composite supports (PCS) in biofilm. The CIGR Journal of AE Scientific Research and Development. Manuscript FP 04-001. Vol. VI, pp. 15

  • Bott TR (1995) Biological growth on heat exchanger surfaces. In: Bott TR (ed) Fouling of heat exchangers. Elsevier, Amsterdam, pp 223–267

    Chapter  Google Scholar 

  • Bryers JD (2000) Biofilm formation and persistence. In: Bryers JD (ed) Biofilms II: process analysis and applications. Wiley-Liss Inc., New York, pp 45–88

    Google Scholar 

  • Bungay HR, Serafica GC (1999) Production of microbial cellulose using a rotating disk film bioreactor. US Patent 5,955,326

  • Busscher HJ, Bos R, van der Mei HC (1995) Initial microbial adhesion is determinant for the strength of biofilm adhesion: hypothesis. FEMS Microbiol Lett 128:229–234

    Article  CAS  Google Scholar 

  • Busscher HJ, van der Mei HC (2000) Initial microbial adhesion events: mechanisms and implications. In: Allison D, Gilbert P, Lappin-Scott H, Wilson M (eds) Community structure and co-operation in biofilms. Cambridge University Press, Cambridge, pp 25–36

    Google Scholar 

  • Cao N, Du J, Gong CS, Tsao GT (1996) Simutaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol 62:2926–2931

    CAS  Google Scholar 

  • Cao N, Du J, Chen C, Gong CS, Tsao GT (1997) Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor. Appl Biochem Biotech 63–65:387–394

    Article  Google Scholar 

  • Characklis WG, Marshall KC (1990) Biofilms. John Wiley & Sons, New York

    Google Scholar 

  • Cheng KC, Catchmark MJ, Demirci A (2009a) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12

    Article  Google Scholar 

  • Cheng KC, Catchmark MJ, Demirci A (2009b) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033–1045

    Article  CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2009c) Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl Microbiol Biotechnol 86:853–861

    Article  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2009d) Enhanced pullulan production in a biofilm reactor by using response surface methodology. J Ind Microbiol Biotechnol (doi:10.1007/s10295-010-0705-x).

  • Cheng KC, Lin JT, Wu JY, Liu WH (2010) Isoflavone conversion of black soybean by immobilized Rhizopus spp. Food Biotechnol 24(4)

  • Chmielewski RAN, Frank JJ (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32

    Article  CAS  Google Scholar 

  • Chung IJ, Park YS (1983) Ethanol fermentation by S. cerevisiae in a bioreactor packed vertically with ceramic rods. In: Proc. Pac Chem Eng Congr, 3rd edn. Korean Institue of Chemical Engineering, Seoul, Korean, vol 4, pp. 174–179

  • Cotton JC, Pometto AL III, Gvozdenovic-Jeremic J (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol 57:626–630

    Article  CAS  Google Scholar 

  • Crueger W, Crueger C (1989) Organic acids. In: Crueger W (ed) Biotechnology: a textbook of industrial microbiology. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Demirci A, Pometto AL III, Johnson KE (1993a) Evaluation of biofilm reactor solid support for mixed culture lactic acid production. Appl Microbiol Biotechnol 38:728–733

    Article  CAS  Google Scholar 

  • Demirci A, Pometto AL III, Johnson KE (1993b) Lactic acid production in a mixed culture biofilm reactor. Appl Environ Microbiol 59:203–207

    CAS  Google Scholar 

  • Demirci A, Pometto AL III (1995) Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production. Appl Microbiol Biotechnol 44:585–589

    Article  Google Scholar 

  • Demirci A, Pometto AL III, Ho K-LG (1995) Continuous ethanol production in biofilm reactors containing plastic composite rings and disks. In: Proc-Biomass conference of the Americas: Energy, environment, agricultural and industry, 2nd edn., Portland, OR, National Renewable Energy Laboratory, Golden, CO, 21–24 Aug 1995

  • Demirci A, Pometto AL III, Ho K-LC (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19:299–304

    Article  CAS  Google Scholar 

  • Demirci A, Pongtharangkul T, Pometto LA III (2007) Applications of biofilm reactors for production of value-added products by microbial fermentation. In: Blaschek PH, Wang HH, Agle EM (eds) Biofilms in the food environment. Blackwell Publishing, Ames, IA, pp 167–189

    Google Scholar 

  • Dempsey MJ (1990) Ethanol production by Zymomonas mobilis in a fluidized bed fermenter. In: de Bong JAM, Visser J, Matiasson B, Tramper J (eds) Physiology of immobilized cells. Elsevier Science Publishers BC, Amsterdam, pp 137–148

    Google Scholar 

  • Ebihara T, Bishop PL (2002) Effect of acetate on biofilms utilized in PAH bioremediation. Environ Eng Sci 19:305–319

    Article  CAS  Google Scholar 

  • Fukuda H (1995) Immobilized microorganism bioreactors. In: Asenjo JA, Merchuk JC (eds) Bioreactor system design. Marcel Dekker, New York, pp 339–375

    Google Scholar 

  • Gassey GG, Bryers JD (2000) Biofouling of engineered materials and systems. In: Bryers JD (ed) Biofilms II: process analysis and applications. Wiley-Liss Inc., New York, pp 237–279

    Google Scholar 

  • Gjaltema A, Vinke JL, van Loosdrecht MCM, Heijnen JJ (1997) Abrasion of suspension biofilm pellets in airlift reactors: Importance of shape, structure and particle concentration. Biotechnol Bioeng 53:88–89

    Article  CAS  Google Scholar 

  • Govender S, Jacobs EP, Leukes WD, Pillary VL (2003) A scalable membrane gradostat reactor for enzyme production using Phanerchaete chrysporium. Biotechnol Lett 25:127–131

    Article  CAS  Google Scholar 

  • Hara F, Nakashima T (1998) Enzymic conversion of phospholipid by acetone-dried fungus immobilized on biomass support particles. Recent res Dev Oil Chem 2:15–29

    CAS  Google Scholar 

  • Heukelelian H, Crosby ES (1956) Slime formation in polluted waters. Sewage Ind Waste 29:78

    Google Scholar 

  • Ho K-LG, Pometto AL III, Hinz PN (1997a) Optimization of L-(+)-lactic aicd biofilm fermentation. Appl Environ Microbiol 63:2533–2542

    CAS  Google Scholar 

  • Ho K-LG, Pometto AL III, Hinz PN, Demirci A (1997b) Nutrient leaching and end product accumulation in plastic composite support for L-(+)-lactic aicd biofilm fermentation. Appl Environ Microbiol 63:2524–2532

    CAS  Google Scholar 

  • Ho K-LG, Pometto AL III, Hinz PN, Dickson JS, Demirci A (1997c) Ingredients selection for plastic composite support for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. Rhamnosus Appl Environ Microbiol 63:2516–2523

    CAS  Google Scholar 

  • Howell JA, Atkinson B (1976) Sloughing of microbial film in trickling filters. Water Res 10:307–316

    Article  Google Scholar 

  • Hui YS, Amirul AA, Yahya RMA, Azizan MNM (2010) Cellulase production by free and immobilized Aspergillus terreus. World J Microbiol Biotechnol 26:79–84

    Article  CAS  Google Scholar 

  • Jackson K, Keyser R, Wozniak DJ (2003) The role of biofilms in airway disease. Semin Respire Crit Care Med 24:663–670

    Article  Google Scholar 

  • Jin G, Englande AJ Jr, Qiu YL (2003) An integrated treatability protocol for biotreatment/bioremediation of toxic pollutants generated by chemical industries. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 38:597–607

    CAS  Google Scholar 

  • Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40:1321–1354

    Article  CAS  Google Scholar 

  • Keevil CW, Walker JT (1992) Normarski DIC microscopy and image analysis of biofilms. BINARY 4:93–85

    Google Scholar 

  • Khiyami MA, Pometto AL III, Kennedy WJ (2006) Lignolytic enzyme production by Phanerochate chrysosporium in PCS biofilm stirred tank bioreactor. J Agric Food Chem 54:1693–1698

    Article  CAS  Google Scholar 

  • Klein J, Kressdorf B (1986) Rapid ethanol fermentation with immobilized Zymomonas mobilis in a three stage reactor system. Biotechnol Lett 8:739–744

    Article  CAS  Google Scholar 

  • Kunduru RM, Pometto AL III (1996a) Evaluation of plastic composite supports for enhanced ethanol production in biofilm reactors. J Ind Microbiol 16:241–248

    Article  CAS  Google Scholar 

  • Kunduru RM, Pometto AL III (1996b) Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Micriobiol 16:249–256

    Article  CAS  Google Scholar 

  • Kwok WK, Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ (1998) Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnol Bioeng 58:400–407

    Article  CAS  Google Scholar 

  • LaMotta EJ (1976) Internal diffusion and reaction in biological films. Envir Sci Technol 10:765–769

    Article  CAS  Google Scholar 

  • Lazarova V, Manem J (2000) Innovative biofilm treatment technologies for waste and wastewater treatment. In: Bryers JD (ed) Biofilm II: process analysis and applications. Wiley-Liss, Inc., New York, pp 159–206

    Google Scholar 

  • Lee YH, Lee CW, Chang HN (1989) Citric acid production by Aspergillus niger immobilized on polyurethane foam. Appl Microbiol Biotechnol 30:141–143

    Article  CAS  Google Scholar 

  • Lewandowski Z, Beyenal H (2007) Fundamentals of biofilm research. Taylor & Francis Inc., New York

    Google Scholar 

  • Linko S (1992) Production of Phanerochaete chrysosporium lignin peroxidase. Finland Biotechnol Adv 10:191–236

    Article  CAS  Google Scholar 

  • Masso-Deya AA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61:769–777

    Google Scholar 

  • Melo LF, Oliveira R (2001) Biofilm reactors. In: Cabral JMS, Mota MM, Tramper J (eds) Multiphase bioreactor design. Taylor & Francis Inc., New York, pp 271–308

    Google Scholar 

  • Mulchandani A, Luong HTJ (1988) Biosynthesis of pullulan using immobilized Aureobasidium pullulans cells. Biotechnol Bioeng 33:306–312

    Article  Google Scholar 

  • Nakashiam T, Fukuda FH, Kyotoni S, Morikawa H (1988) Culture conditions for intracellular lipases production by Rhizopus chinensis and its immobilization within biomass support particles. J Ferment Technol 66:444–448

    Google Scholar 

  • Napoli F, Olivieri G, Russo ME, Marzocchella A, Salatino P (2010) Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J Ind Microbiol Biotechnol. doi:10.1007/s10295-010-0707-8

    Google Scholar 

  • Nicolella C, van Loosdrecht CMM, Heijnen JS (2000) Practicle-based biofilm reactos technology. Trends Biotechnol 18:312–320

    Article  CAS  Google Scholar 

  • Norwood DE, Gilmour A (2000) The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steady-state multispecies biofilm. J Appl Microbiol 88:512–520

    Article  CAS  Google Scholar 

  • Nyvad B, Fejerskov O (1997) Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination. Commun Dent Oral Epiderm 25:69–75

    Article  CAS  Google Scholar 

  • O’Flaherty V (2003) Biofilm in wastewater treatment. In: Lens P (ed) Biofilms in medicine, industry and environmental biotechnology: characteristics, analysis and control. IWA Publishing, London, pp 132–159

    Google Scholar 

  • Oliveira R (1992) Physico-chemical aspects of adhesion. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms-science and technology. Kluwer Academic Publishers, Dordrecht, pp 45–58

    Google Scholar 

  • Oriel P (1988) Immobilization of recombinant Eschericia coli in silicone polymer beads. Enzyme Microb Technol 10:518–523

    Article  CAS  Google Scholar 

  • Park YH, Seo WT (1988) Production of cephalosporin C in a fluidized bioreactor. Sanop Misaengmul Hakhoechi 16:25–32

    CAS  Google Scholar 

  • Park YS, Toda K (1992) Multi-stage biofilm reactor for acetic acid production at high concentration. Biotechnol Lett 14:609–612

    Article  CAS  Google Scholar 

  • Park YH, Wallis DA (1984) Steady-state performance of a continuous biofilm fermentor system for penicillin production. Korean J Chem Eng 1:119–128

    Article  CAS  Google Scholar 

  • Park YH, Kim EY, Seo WT, Jung KH, Yoo YJ (1989) Production of cephalosporin C in a fluidized-bed bioreactor. J Ferment Bioeng 67:409–414

    Article  CAS  Google Scholar 

  • Patching JW, Fleming GTA (2003) Industrial biofilm: formation, problems and control. In: Lens P (ed) Biofilms in medicine, industry and environmental biotechnology: characteristics, analysis and control. IWA Publishing, London, pp 568–590

    Google Scholar 

  • Pereira MA, Alves MM, Azeredo J, Mota M, Oliveira R (2000) Physico-chemical properties of porous microcarriers in relation with the adhesion of an anaerobic consortium. J Ind Microbiol Biotechnol 24:181–186

    Article  CAS  Google Scholar 

  • Pometto AL III, Demirci A, Johnson KE (1997) Immobilization of microorganisms on a support made of synthetic polymer and plant material. US Patent No. 5,595,893

  • Pongtharangkul T, Demirci A (2006a) Evaluation of culture medium for nisin production in repeated-batch biofilm reactor. Biotechnol Prog 22:217–224

    Article  CAS  Google Scholar 

  • Pongtharangkul T, Demirci A (2006b) Effects on pH profiles on nisin production in biofilm reactor. Appl Microbiol Biotechnol 71:804–811

    Article  CAS  Google Scholar 

  • Pongtharangkul T, Demirci A (2006c) Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl Microbiol Biotechnol 73:73–79

    Article  CAS  Google Scholar 

  • Qureshi N, Paterson AHJ, Maddox IS (1988) Models for continuous production of solvents from whey permeate in a packed bed reactor using cells of Clostridium acetobutylicum immobilized by adsorption into bonechar. Appl Microbiol Biotechnol 29:323–328

    Article  CAS  Google Scholar 

  • Qureshi N, Annous AB, Ezeji CT, Karcher P, Maddox SI (2005) Biofilms reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24

    Article  Google Scholar 

  • Ricciardi A, Parente E, Volpe E, Clementi F (1997) Citric aicd production from glucose by Aspergillus niger immobilized in polyurethane foam. Microbiol Enzimol 47:63–76

    CAS  Google Scholar 

  • Robinson KD, Wang ICD (1985) A novel bioreactor system for biopolymer production. Ann N Y Acad Sci Biochem Eng V 506:229–241

    Article  Google Scholar 

  • Sakurai A, Iami H, Sakakibara M (1999) Citric acid production suing biofilm of Aspergillus niger. Recent Res Dev Biotechnol Bioeng 2:1–13

    CAS  Google Scholar 

  • Sanroman A, Pintado J, Lema JM (1994) A comparison of two techniques (adsorption and entrapment) for the immobilization of Aspergillus niger in polyurethane foam. Biotechnol Tech 6:389–394

    Article  Google Scholar 

  • Sanroman A, Feijoo G, Lema JM (1996) Immobilization of Aspergillus niger and Phanerochaete chrysosporium on polyurethane foam. Prog Biotechnol 11:132–135

    Article  CAS  Google Scholar 

  • Schugerl K (1997) Three-phase-biofluidization: application of the fluidization technique in the biotechnology. A review. Chem Eng Sci 52:3661–3668

    Article  CAS  Google Scholar 

  • Srivastava P, Kundu S (1999) Studies on C production in an air lift reactor using different growth modes of Cephalosporium acremonium. Proc Biochem 34:329–333

    Article  CAS  Google Scholar 

  • Stewart PS, Murga R, Srinivasan R, de Beer D (1995) Biofilm structure heterogeneity visualized by three microscopic methods. Water Res 29:2006–2009

    Article  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  • Sousa M, Azeredo J, Feijo J, Oliveira R (1997) Polymeric supports for the adhesion of a consortium of autotrophic nitrifying bacteria. Biotechnol Tech 11:751–754

    Article  CAS  Google Scholar 

  • Teixeira P, Oliveira R (1999) Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. J Adhes Sci Tech 13:1287–1294

    Article  CAS  Google Scholar 

  • Urbance SE, Pometto AL III, DiSpirito AA, Demirci A (2003) Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol 17:53–65

    Article  CAS  Google Scholar 

  • Urbance SE, Pometto AL III, DiSpirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeated-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65:664–670

    Article  CAS  Google Scholar 

  • van Loosdrecht MCM, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modeling of biofilm structure. Antonie Van Leeuwenhoek 81:245–256

    Article  Google Scholar 

  • Velazquez AC, Pometto AL III, Ho KLG, Demirci A (2001) Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Appl Microbiol Biotechnol 55:434–441

    Article  CAS  Google Scholar 

  • Von Canstein H, Li Y, Leonhauser J, Haase E, Felske A, Deckwer WD, Wagner-Dobler I (2002) Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol 68:1938–1946

    Article  Google Scholar 

  • Wang J (2000) Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresource Technol 75:245–247

    Article  Google Scholar 

  • Webb C, Fukuda H, Atkinson B (1986) The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol Bioeng 28:41–50

    Article  CAS  Google Scholar 

  • White DC (1984) Chemical characterization of films. Life Sci Res Rep 31:159–176

    CAS  Google Scholar 

  • Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  CAS  Google Scholar 

  • Wirtanen G, Saarela M, Mattila-Sandholm T (2000) Biofilm-impact on hygiene in food industries. In: Bryers JD (ed) Biofilm II: process analysis and applications. Wiley-Liss Inc., New York, pp 327–372

    Google Scholar 

  • Yang ST, Lo YM, Min BD (1996) Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor. Biotechnol Prog 12:630–637

    Article  CAS  Google Scholar 

  • Yashino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36

    Article  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Demirci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, KC., Demirci, A. & Catchmark, J.M. Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87, 445–456 (2010). https://doi.org/10.1007/s00253-010-2622-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2622-3

Keywords

Navigation