Skip to main content

Advertisement

Log in

Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composited prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55 × 103 M−1, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0 % to 106.0 % which underpins the excellent performance of this SWNT-based DNA sensor.

A biosensor based on DNA and single walled carbon nanotubes modified glassy carbon electrode displays a linear electrochemical response to bisphenol A in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  2. Biedermann-Berm S, Grob K (2009) Release of bisphenol A from polycarbonate baby bottles: water hardness as the most relevant factor. Eur Food Res Technol 228:679–684

    Article  Google Scholar 

  3. Kovaaic P (2010) How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Med Hypotheses 75:1–4

    Article  Google Scholar 

  4. Bezaee M, Yamini Y, Shariati S, Esrafili A, Shamsipur M (2009) Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J Chromatorgr A 1216:1511–1514

    Article  Google Scholar 

  5. García-Prieto A, Lunar ML, Rubio S, Pérez-Bendito D (2008) Determination of urinary bisphenol A by coacervative microextraction and liquid chromatography-fluorescence detection. Anal Chim Acta 630:19–27

    Article  Google Scholar 

  6. Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H (2000) Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J Chromatogr B 749:17–23

    Article  CAS  Google Scholar 

  7. Gómez MJ, Agüera A, Mezcua M, Hurtado J, Mocholí F, Fernández-Alba AR (2007) Simultaneous analysis of neutral and acidic pharmaceuticals as well as related compounds by gas chromatography-tandem mass spectrometry in wastewater. Talanta 73:314–320

    Article  Google Scholar 

  8. Kuramitz H, Nakata Y, Kwwasaki MS, Tanaka S (2001) Electrochemical oxidation of bisphenol A: Application to the removal of bishphenol A using a crbon fiber electrode. Chemosphere 45:37–43

    Article  CAS  Google Scholar 

  9. Xue F, Wu JJ, Chu HQ, Mei ZL, Ye YK, Liu J, Zhang R, Peng CF, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180:109–115

    Article  CAS  Google Scholar 

  10. Gao Y, Cao Y, Yang DG, Luo XJ, Tang YM, Li HM (2012) Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode. J Hazard Mater 199–200:111–118

    Article  Google Scholar 

  11. Portaccio M, Tuoro DD, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D (2010) A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron 25:2003–2008

    Article  CAS  Google Scholar 

  12. Wang F, Yang J, Wu K (2009) Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Anal Chim Acta 638:23–28

    Article  CAS  Google Scholar 

  13. Yin H, Zhou Y, Ai S (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. J Electroanal Chem 626:80–88

    Article  CAS  Google Scholar 

  14. Li Q, Li H, Du GF, Xu ZH (2010) Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO Electrode. J Hazard Mater 180:703–709

    Article  CAS  Google Scholar 

  15. Niu XL, Yang W, Wang GY, Ren J, Guo H, Gao JZ (2013) A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochimica Acta 98:167–175

    Article  CAS  Google Scholar 

  16. Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379–386

    Article  CAS  Google Scholar 

  17. Poorahong S, Thammakhet C, Thavarungkul P, Limbut W, Numnuam A, Kanatharana P (2012) Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes. Microchim Acta 176:91–99

    Article  CAS  Google Scholar 

  18. Zheng ZX, Du YL, Wang ZH, Feng QL, Wang CM (2013) Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst 138:693–698

    Article  CAS  Google Scholar 

  19. Luo LQ, Liu JY, Wang ZX, Yang XR, Dong SJ, Wang EK (2001) Fabrication of layer-by-layer deposited multilayer films containing DNA and its interaction with methyl green. Biophys Chem 94:11–22

    Article  CAS  Google Scholar 

  20. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  21. Jagota A, Diner BA, Boussaad S, Zheng M (2005) Carbon nanotube-biomolecule interactions: Applications in carbon nanotubes separation and biosensing. Nanosci Nanotechnol 10:253–271

    Google Scholar 

  22. Wang YW, Liu H, Wang F, Gao YM (2012) Electrochemical oxidation behavior of methotrexate at DNA/SWCNT/Nafion composite film-modified glassy carbon electrode. J Solid State Electrochem 16:3227–3235

    Article  CAS  Google Scholar 

  23. Vega D, Agüí L, Cortés G, Yáñez-Sedeño P, Pingarrón JM (2007) Electrochemical detection of phenolic estrogenic compounds at carbong nanotube-modified electrodes. Talanta 71:1031–1038

    Article  CAS  Google Scholar 

  24. Zheng YQ, Yang CZ, Pu WH, Zhang JD (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21–26

    Article  CAS  Google Scholar 

  25. Wang YL, Liu L, Li MG, Xu SD, Gao F (2011) Multifunctional carbon nanotubes for direct electrochemistry of glucose bioassay. Biosens Bioelectron 30:107–111

    Article  CAS  Google Scholar 

  26. Wang MZ, Zheng JB (2012) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on the functionalized grapheme-carbon nanotube composite film. J Electrochem Soc 159:F150–F156

    Article  CAS  Google Scholar 

  27. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  28. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol A in food. J Chromatogr A 1216:449–469

    Article  Google Scholar 

  29. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  30. Ngundi MM, Sadik OA, Yamaguchi T, Suye S (2003) First comparative reaction mechanisms of β-estradiol and selected environmental hormones in a redox environment. Elecrochem Commun 5:61–67

    Article  CAS  Google Scholar 

  31. Bard AJ, Faulkner LR (1980) Electrochemical methods: Fundamentals and Applications. Wiley, New York, chapter 6

    Google Scholar 

  32. Carter MT, Rodriguez M, Bard AJ (1989) Votammetric studies of the interaction of metal chelates with DNA. 2. Tris-Chelated complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and 2, 2′-bipyridine. J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Key project of Shenzhen Polytechnic (No.2210 K3070014) and “Qianbaishi Candidate” fund for Higher Education of Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Jiang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Ding, W., Luan, C. et al. Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes. Microchim Acta 180, 1021–1028 (2013). https://doi.org/10.1007/s00604-013-1025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1025-4

Keywords

Navigation