Skip to main content
Log in

polycalconcarboxylic acid/electrochemically reduced graphene oxide-modified glassy carbon electrode-based voltammetric sensor for the simultaneous determination of dopamine and tyrosine

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A voltammetric sensor has been developed for dopamine and tyrosine based on the double modification of polycalconcarboxylic acid (pCCA) and electrochemically reduced graphene oxide (ERGO) on the glassy carbon electrode (GCE). The electrode was first modified with calconcarboxylic acid, followed by the modification with electrochemically reduced graphene oxide (ERGO/pCCA/GCE) over it. The extended п-electron system on pCCA helps to increase the conductivity of the material. The functional groups present on pCCA along with its extended conjugation increase the electrocatalytic effect of the modified electrode. ERGO has good electrochemical properties due to the reduction of oxygen-containing functional groups in their edge plane sites. Rapid electron transfer is possible in the case of ERGO-modified electrodes due to the high proportion of the edge plane defects. When pCCA and ERGO are clubbed together, there will be a synergistic effect of the properties of these two materials. Characterisation studies have been done, and different sensor parameters were optimised. Under optimal experimental conditions, a wide linear range was obtained for the determination of dopamine from 1.00 × 10−5 M to 5.00 × 10−7 M. The determination of tyrosine was possible in two linear ranges, from 7.00 × 10−5 M to 2.00 × 10−5 M and from 1.00 × 10−5 M to 3.00 × 10−6 M. The limit of detection values (LODs) obtained for dopamine and tyrosine were 1.00 × 10−7 M and 9.00 × 10−7 M. Application studies for the determination of the analytes were done in synthetic urine and blood serum using the spike recovery method.

Graphical abstract

The electrochemical sensing of DA and Tyr using ERGO/pCCA/GCE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Code availability

Not applicable.

References

  1. Sivasubramanian R, Biji P (2016) Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine. Mater Sci Eng B 210:10–18. https://doi.org/10.1016/j.mseb.2016.04.018

    Article  CAS  Google Scholar 

  2. Hareesha N, Manjunatha JG (2020) Fast and enhanced electrochemical sensing of dopamine at cost-effective poly (DL-phenylalanine) based graphite electrode. J Electroanal Chem 878:114533. https://doi.org/10.1016/j.jelechem.2020.114533

    Article  CAS  Google Scholar 

  3. Olguín HJ, Guzmán DC, García EH, Mejía GB (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev 2016:9730467. https://doi.org/10.1155/2016/9730467

    Article  CAS  Google Scholar 

  4. Hsine Z, Mlika R, Jaffrezic-Renault N, Korri-Youssoufi H (2022) Review—recent progress in graphene based modified electrodes for electrochemical detection of dopamine. Chemosensors 10:249. https://doi.org/10.3390/chemosensors10070249

    Article  CAS  Google Scholar 

  5. Kan X, Zhou H, Li C, Zhu A, Xing Z, Zhao Z (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69–75. https://doi.org/10.1016/j.electacta.2011.12.086

    Article  CAS  Google Scholar 

  6. Yusoff N, Pandikumar A, Ramaraj R (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. https://doi.org/10.1007/s00604-015-1609-2

    Article  CAS  Google Scholar 

  7. Hareesha N, Gangadharappa J, Manjunatha G, Raril C, Tigari G (2019) Design of novel surfactant modified carbon nanotube paste electrochemical sensor for the sensitive investigation of tyrosine as a pharmaceutical drug. Adv Pharm Bull 9:132–137. https://doi.org/10.15171/jcvtr.2015.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sa M, Ying L, Ai-guo T, Le-dong X, Ya-ping R (2012) Simultaneous determination of tyrosine, tryptophan and 5-hydroxytryptamine in serum of MDD patients by high performance liquid chromatography with fluorescence detection. Clin Chim Acta 413:973–977. https://doi.org/10.1016/j.cca.2012.02.019

    Article  CAS  PubMed  Google Scholar 

  9. Ghoreishi SM, Behpour M, Jafari N, Golestaneh M (2012) Electrochemical determination of tyrosine in the presence of dopamine and uric acid at the surface of gold nanoparticles modified carbon paste electrode. J Chinese Chem Soc 59:1015–1020. https://doi.org/10.1002/jccs.201100654

    Article  CAS  Google Scholar 

  10. Karimi S, Heydari M (2018) Voltammetric mixture analysis of tyrosine and tryptophan using carbon paste electrode modified by newly synthesized mesoporous silica nanoparticles and clustering of variable-partial least square: efficient strategy for template extraction in mesoporous silica nanoparticle synthesis. Sens Actuators B Chem 257:1134–1142. https://doi.org/10.1016/j.snb.2017.11.014

    Article  CAS  Google Scholar 

  11. Deng P, Xiao J, Feng J, Tian Y, Wu Y, Li J, He Q (2021) Highly sensitive electrochemical sensor for tyrosine detection using a sub-millimeter electrode. Microchem J 165:106106. https://doi.org/10.1016/j.microc.2021.106106

    Article  CAS  Google Scholar 

  12. Bao Q, Li G, Yang Z, Pan P, Liu J, Tian R, Guo Q, Wei J, Hu W, Cheng W, Lin L (2023) Electrochemical detection of tyrosine with casting electrode with carbon black and graphene oxide co-doped. Microchem J 185:108238. https://doi.org/10.1016/j.microc.2022.108238

    Article  CAS  Google Scholar 

  13. Swathy S, Mathew MR, Girish Kumar K (2022) Poly L- methionine / electrochemically reduced graphene oxide composite film modified glassy carbon electrode for the simultaneous determination of 5-hydroxyindole acetic acid and tyrosine. Electrochem Soc 169:287519. https://doi.org/10.1149/1945-7111/ac8ad3

    Article  CAS  Google Scholar 

  14. Zou H, Lu X, Kong F (2020) A voltammetric sensor based on reduced graphene oxide-hemin-Ag nanocomposites for sensitive determination of tyrosine. RSC Adv 10:28026–28031. https://doi.org/10.1039/d0ra04976j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sundar S, Venkatachalam G, Kwon SJ (2018) Biosynthesis of copper oxide ( CuO ) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8:823. https://doi.org/10.3390/nano8100823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cetinkaya A, Kaya SI, Ozkan SA (2023) A collection of the best practice examples of electroanalytical applications in education: from polarography to sensors. J Solid State Electrochem 28:869–895. https://doi.org/10.1007/s10008-023-05637-0

    Article  CAS  Google Scholar 

  17. Doll EG, Santana ER, Winiarski JP, Baumgarten LG, Vieira IC (2023) Green synthesis of gold nanoparticles using peach extract incorporated in graphene for the electrochemical determination of antioxidant butylated hydroxyanisole in food matrices. Biosensors 13:1037. https://doi.org/10.3390/bios13121037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nardi N, Baumgarten LG, Dreyer JP, Santana ER, Winiarski JP, Vieira IC (2023) Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine. J Pharm Biomed Anal 236:115681. https://doi.org/10.1016/j.jpba.2023.115681

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Huang P, Bai J, Wang H, Wu X, Zhao Y (2006) Voltammetric sensing of uric acid and ascorbic acid with poly (p-toluene sulfonic acid) modified electrode. Int J Electrochem Sci 1:334–342

    Article  Google Scholar 

  20. Wei N, Chen J, Zhang J, Wang K, Xu X, Lin J, Li G, Lin X, Chen Y (2009) An electrochemical biosensor for detection of PML / RARA fusion gene using capture probe covalently immobilized onto poly-calcon carboxylic acid modified glassy carbon electrode. Talanta 78:1227–1234. https://doi.org/10.1016/j.talanta.2008.12.053

    Article  CAS  PubMed  Google Scholar 

  21. Fu S, Zhu Y, Zhang Y, Zhang M, Zhang Y (2021) Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 171:106776. https://doi.org/10.1016/j.microc.2021.106776

    Article  CAS  Google Scholar 

  22. Piovesan JV, Santana ER, Spinelli A (2018) Reduced graphene oxide/gold nanoparticles nanocomposite-modified glassy carbon electrode for determination of endocrine disruptor methylparaben. J Electroanal Chem 813:163–170. https://doi.org/10.1016/j.jelechem.2018.02.025

    Article  CAS  Google Scholar 

  23. Cogal S (2018) Electrochemical determination of dopamine using a poly (3, 4–ethylenedioxythiophene)-reduced graphene oxide-modified glassy carbon electrode. Anal Lett 51:1666–1679. https://doi.org/10.1080/00032719.2017.1387791

    Article  CAS  Google Scholar 

  24. Jafari H, Ganjali MR, Dezfuli AS, Kohan E (2018) A platform for electrochemical sensing of biomolecules based on Europia/reduced graphene oxide nanocomposite. J Mater Sci Mater Electron 29:20639–20649. https://doi.org/10.1007/s10854-018-0202-y

    Article  CAS  Google Scholar 

  25. Xu J, Zhu LY, Shen H, Zhang HM, Jia XB, Yan R, Li SL, Xu HX (2012) A critical view on spike recovery for accuracy evaluation of analytical method for medicinal herbs. J Pharm Biomed Anal 62:210–215. https://doi.org/10.1016/j.jpba.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  26. Kumar DR, Baynosa ML, Shim J (2019) Cu2+-1, 10-phenanthroline-5, 6-dione@ electrochemically reduced graphene oxide modified electrode for the electrocatalytic determination of L-cysteine. Sens Actuators B Chem 293:107–114. https://doi.org/10.1016/j.snb.2019.04.122

    Article  CAS  Google Scholar 

  27. Raj MA, John SA (2013) Fabrication of electrochemically reduced graphene oxide films on glassy carbon electrode by self-assembly method and their electrocatalytic application. J Phys Chem C 117:4326–4336. https://doi.org/10.1021/jp400066z

    Article  CAS  Google Scholar 

  28. Kyei SK, Akaranta O, Darko G (2020) Synthesis, characterization and antimicrobial activity of peanut skin extract-synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds. Sci Afr 8:e00406. https://doi.org/10.1016/j.sciaf.2020.e00406

    Article  Google Scholar 

  29. Rostamizadeh S, Rezgi M, Shadjou N, Hasanzadeh M (2013) Magnetic graphene oxide anchored sulfonic acid as a novel nanocatalyst for the synthesis of N-aryl-2-amino-1,6-naphthyridines. J Chin Chem Soc 98:2–7. https://doi.org/10.1002/jccs.201300167

    Article  Google Scholar 

  30. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W (2012) Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta 93:320–325. https://doi.org/10.1016/j.talanta.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  31. Bacil RP, Garcia PHM, Helena S, Serrano P (2022) New insights on the electrochemical mechanism of epinephrine on glassy carbon electrode. J Electroanal Chem 908:116111. https://doi.org/10.1016/j.jelechem.2022.116111

    Article  CAS  Google Scholar 

  32. Lazanas AC, Prodromidis MI (2023) Electrochemical impedance spectroscopy – a tutorial. ACS Meas Sci Au 3:162–193. https://doi.org/10.1021/acsmeasuresciau.2c00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santana ER, Spinelli A (2020) Electrode modified with graphene quantum dots supported in chitosan for electrochemical methods and non-linear deconvolution of spectra for spectrometric methods: approaches for simultaneous determination of triclosan and methylparaben. Microchim Acta 187:250. https://doi.org/10.1007/s00604-020-04225-7

    Article  CAS  Google Scholar 

  34. Massoumi B, Fathalipour S, Massoudi A, Hassanzadeh M (2013) Ag/polyaniline nanocomposites: synthesize, characterization, and application to the detection of dopamine and tyrosine. J Appl Polym Sci 130:2780–2789. https://doi.org/10.1002/app.39448

    Article  CAS  Google Scholar 

  35. Chen X, Zhang G, He Y, Shi L, Zhang J (2020) A sensitive electrochemical sensor based on Au @ Pd hybrid nanorods supported on B-doped graphene for simultaneous determination of acetaminophen, dopamine and tyrosine. Int J Electrochem Sci 15:5927–5944. https://doi.org/10.20964/2020.03.10

    Article  CAS  Google Scholar 

  36. Zribi R, Maalej R, Gillibert R, Donato MG, Gucciardi PG, Leonardi SG, Neri G (2020) FlatChem Simultaneous and selective determination of dopamine and tyrosine in the presence of uric acid with 2D-MoS2 nanosheets modified screen-printed carbon electrodes. FlatChem 24:100187

    Article  CAS  Google Scholar 

  37. Kemmegne-Mbouguen JC, Ngameni E (2017) Simultaneous quantification of dopamine, acetaminophen and tyrosine at carbon paste electrodes modified with porphyrin and clay. Anal Methods 9:4157–4166. https://doi.org/10.1039/C7AY01173C

    Article  CAS  Google Scholar 

  38. Thomas A, Girish Kumar K (2018) Communication — electrooxidation of dopamine at CoNP-pAHNSA modified electrode : a sensitive approach to its determination. J Electrochem Soc 165:B466. https://doi.org/10.1149/2.1151810jes

    Article  CAS  Google Scholar 

  39. Sam S, Mathew MR, Girish Kumar K (2022) A simple electropolymer based voltammetric sensor for the simultaneous determination of melanoma biomarkers–L-Dopa and L-tyrosine. J Electrochem Soc 169:027511. https://doi.org/10.1149/1945-7111/ac51a1

    Article  CAS  Google Scholar 

  40. Kodakat K, Girish Kumar K (2023) Fabrication of a selective and sensitive electro-synthesized molecularly imprinted polymer-based electrochemical sensor for the determination of xanthine. J Appl Electrochem 53:2259–2272. https://doi.org/10.1007/s10800-023-01916-w

    Article  CAS  Google Scholar 

  41. Hosseini M, Momeni MM, Faraji M (2010) An innovative approach to electro-oxidation of dopamine on titanium dioxide nanotubes electrode modified by gold particles. J Appl Electrochem 40:1421–1427. https://doi.org/10.1007/s10800-010-0119-5

    Article  CAS  Google Scholar 

  42. Kodakat K, Girish Kumar K (2024) Fabrication and comprehensive comparison of the performance of chemically modified GCE and SPCE for the simultaneous determination of uric acid and vanillylmandelic acid. Microchem J 197:109767. https://doi.org/10.1016/j.microc.2023.109767

    Article  CAS  Google Scholar 

  43. Schindler S, Bechtold T (2019) Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry. J Electroanal Chem 836:94–101. https://doi.org/10.1016/j.jelechem.2019.01.069

    Article  CAS  Google Scholar 

  44. Jiang J, Cao Y, Liu J, Zhang H, Kan G, Yu K (2022) Mass spectrometric observation on free radicals during electrooxidation of dopamine. Anal Chim Acta 1193:339403. https://doi.org/10.1016/j.aca.2021.339403

    Article  CAS  PubMed  Google Scholar 

  45. Yu X, Mai Z, Xiao Y, Zou X (2008) Electrochemical behavior and determination of L-tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalysis 20:1246–1251. https://doi.org/10.1002/elan.200704179

    Article  CAS  Google Scholar 

  46. Harsini M, Widyaningrum BA, Fitriany E, Paramita DRA, Farida AN, Baktir A, Kurniawan F, Sakti SCW (2022) Electrochemical synthesis of polymelamine/gold nanoparticle modified carbon paste electrode as voltammetric sensor of dopamine. Chinese J Anal Chem 50:100052. https://doi.org/10.1016/j.cjac.2022.100052

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the Department of Physics, Cochin University of Science and Technology (CUSAT) for FE-SEM and EDX analysis. The authors would also like to express their sincere gratitude towards SAIF, M. G. University for the Raman spectroscopy.

Funding

The Council of Scientific and Industrial Research (CSIR) and the University Grants Commission (UGC), India, provided financial aid in the form of research fellowship. The author, Swathy S, would like to acknowledge the Council of Scientific and Industrial Research (CSIR) for financial assistance in the form of a research fellowship (grant no. 09/239(0541)/2018-EMR-I). The author, Keerthi K., would like to acknowledge the University Grants Commission (UGC) for financial assistance in the form of the research fellowship. The authors would like to express their sincere gratitude towards the PLEASE project, Higher Education Council, Government of Kerala, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Swathy S: conceptualisation, methodology, formal analysis and investigation, writing—original draft preparation; Keerthi K.: conceptualisation and writing—review and editing; K. Girish Kumar: conceptualisation, writing-review and editing, funding acquisition, resources, and supervision.

Corresponding author

Correspondence to K. Girish Kumar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 268 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swathy S, Kodakat, K. & Kumar, K.G. polycalconcarboxylic acid/electrochemically reduced graphene oxide-modified glassy carbon electrode-based voltammetric sensor for the simultaneous determination of dopamine and tyrosine. Ionics (2024). https://doi.org/10.1007/s11581-024-05490-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05490-9

Keywords

Navigation