Skip to main content
Log in

Electrochemical aptasensor for the determination of bisphenol A in drinking water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We present an electrochemical aptasensor for rapid and ultrasensitive determination of the additive bisphenol A (BPA) and for screening drinking water for the presence of BPA. A specific aptamer against BPA and its complementary DNA probe were immobilized on the surface of a gold electrode via self-assembly and hybridization, respectively. The detection of BPA is mainly based on the competitive recognition of BPA by the immobilized aptamer on the surface of the electrode. The electrochemical aptasensor enables BPA to be detected in drinking water with a limit of detection as low as 0.284 pg mL−1 in less than 30 min. This extraordinary sensitivity makes the method a most powerful tool for on-site monitoring of water quality and food safety.

A novel electrochemical aptasensor was developed for rapid and ultrasensitive detection of bisphenol A (BPA) and screening of BPA in drinking water using the specific aptamer against BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    Article  CAS  Google Scholar 

  2. Liao CY, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45:9372–9379

    Article  CAS  Google Scholar 

  3. Hengstler JG, Foth H, Gebel T, Kramer PJ, Lilienblum W, Schweinfurth H, Völkel W, Wollin KM, Gundert-Remy U (2011) Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol 41:263–291

    Article  CAS  Google Scholar 

  4. Hardy ML, Banasik M, Stedeford T (2009) Toxicology and human health assessment of decabromodiphenyl ether. Crit Rev Toxicol 39:1–44

    Article  CAS  Google Scholar 

  5. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070

    Article  CAS  Google Scholar 

  6. Hegnerova K, Homola J (2010) Surface plasmon resonance sensor for detection of bisphenol A in drinking water. Sens Actuators B-Chem 151:177–179

    Article  Google Scholar 

  7. Gonzalez-Casado A, Navas N, del Olom M, Vilchez JL (1998) Determination of bisphenol A in water by micro liquid-liquid extraction followed by silylation and gas chromatography-mass spectrometry analysis. J Chromatogr Sci 36:565–570

    CAS  Google Scholar 

  8. Calafat AM, Needham LL (2008) Factors affecting the evaluation of biomonitoring data for human exposure assessment. Int J Androl 31:139–143

    Article  CAS  Google Scholar 

  9. Hegnerová K, Piliarik M, Šteinbachová M, Flegelová Z, Černohorská H, Homola J (2010) Detection of bisphenol A using a novel surface plasmon resonance biosensor. Anal Bioanal Chem 398:1963–1966

    Article  Google Scholar 

  10. Sajiki J, Hasegawa Y, Hashimoto H, Makabe Y, Miyamoto F, Yanagibori R, Shin J, Shimidzu Y, Morigami T (2008) Determination of Bisphenol A (BPA) in plasma of hemodialysis patients using three methods: LC/ECD, LC/MS, and ELISA. Toxicol Mech Methods 18:733–738

    Article  CAS  Google Scholar 

  11. Kim A, Lee CR, Jin CF, Lee KW, Lee SH, Shon KJ, Park NG, Kim DK, Kang SW, Shim YB, Park JS (2007) A Sensitive and reliable quantification method for Bisphenol A based on modified competitive ELISA method. Chemosphere 68:1204–1209

    Article  CAS  Google Scholar 

  12. Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee DK, Hong S, Kim S (2011) Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides 21:85–91

    Article  CAS  Google Scholar 

  13. Ohkuma H, Abe K, Ito M, Kokado A, Kambegawa A, Maeda M (2002) Development of a highly sensitive enzyme-linked immunosorbent assay for bisphenol A in serum. Analyst 127:93–97

    Article  CAS  Google Scholar 

  14. Marchesini GR, Meulenberg E, Haasnoot W, Irth H (2005) Biosensor immunoassays for the detection of bisphenol A. Anal Chim Acta 528:37–45

    Article  CAS  Google Scholar 

  15. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  16. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  17. Bang GS, Cho SH, Kim BG (2005) A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 21:863–870

    Article  CAS  Google Scholar 

  18. Ho HA, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387

    Article  CAS  Google Scholar 

  19. Huang CC, He YF, Cao ZH, Tan WH, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  CAS  Google Scholar 

  20. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  Google Scholar 

  21. Lin C, Katilius E, Liu Y, Zhang JP, Yan H (2006) Self-assembled signaling aptamer DNA arrays for protein detection. Angew Chem Int Ed 45:5296–5301

    Article  CAS  Google Scholar 

  22. Kuang H, Chen W, Xu DH, Xu LG, Zhu YY, Liu LQ, Chu HQ, Peng CF, Xu CL, Zhu SF (2010) Fabricated aptamer-based electrochemical signal-off sensor of ochratoxin A. Biosens Bioelectron 26:710–716

    Article  CAS  Google Scholar 

  23. Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2:2888–2895

    Article  CAS  Google Scholar 

  24. Orazem ME, Tribollet B (2008) Electrochemical impendance spectroscopy. Wiley, New York

    Book  Google Scholar 

  25. Xu Q, Yin XY, Wu SY, Wang M, Wen ZY, Gu ZZ (2012) Determination of phthalates ester in water samples using nylon6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchim Acta 168:267–275

    Google Scholar 

  26. Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H (2000) Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J Chromatogr B 749:17–23

    Article  CAS  Google Scholar 

  27. Lin CY, Fuh MR, Huang SD (2011) Application of liquid-liquid microextraction and high performance liquid chramatography for the determination of alkylphenols and bisphenol-A in water. J Sep Sci 34:428–435

    Article  CAS  Google Scholar 

  28. Sun Y, Irie M, Kishikawa N, Wada M, Kuroda N, Nakashima K (2004) Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed Chromatogr 18:501–507

    Article  CAS  Google Scholar 

  29. Kuroda N, Kinoshita Y, Sun Y, Wada M, Kishikawa N, Nakashima K, Makino T, Nakazawa H (2003) Measurement of bisphenol A levels in human blood serum and ascitic fluid by HPLC using a fluorescent labeling reagent. J Pharm Biomed Anal 30:1743–1749

    Article  CAS  Google Scholar 

  30. Watabe Y, Kondo T, Morita M, Tanaka N, Haginaka J, Hosoya K (2004) Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. J Chromatogr A 1032:45–49

    Article  CAS  Google Scholar 

  31. Inoue K, Yamaguchi A, Wada M, Yoshimura Y, Makino T, Nakazawa H (2001) Quantitative detection of bisphenol A and bisphenol A diglycidyl ether metabolites in human plasma by liquid chromatography-electrospray mass spectrometry. J Chromatogr B 765:121–126

    Article  CAS  Google Scholar 

  32. Inoue K, Wada M, Higuchi T, Oshio S, Umeda T, Yoshimura Y, Nakazawa H (2002) Application of liquid chromatography-mass spectrometry to the quantification of bisphenol A in human semen. J Chromatogr B 773:97–102

    Article  Google Scholar 

  33. Moors S, Blaszkewicz M, Bolt HM, Degen GH (2007) Simultaneous determination of daidzein, equol, genistein and bisphenol A in human rine by a fast and simple method using SPE and GC-MS. Mol Nutr Food Res 51:787–798

    Article  CAS  Google Scholar 

  34. Fontana AR, de Toro MM, Alamirano JC (2011) One-step derivatization and preconcentration microextraction technique for determination of bishpenol A in beverage samples by gas chromatography-mass spectrometry. J Agric Food Chem 59:3559–3565

    Article  CAS  Google Scholar 

  35. Zhao MP, Li YZ, Guo ZQ, Zhang XX, Chang WB (2002) A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bishpenols. Talanta 57:1205–1210

    CAS  Google Scholar 

  36. Kim A, Li CR, Jin CF, Lee KW, Lee SH, Shon KJ, Park NG, Kim DK, Kang SW, Shim YB, Park JS (2007) A sensitive and reliable quantification method for bisphenol A based on modified competitive ELISA method. Chemosphere 68:1204–1209

    Article  CAS  Google Scholar 

  37. Kuruto-Niwa R, Tateoka Y, Usuki Y, Nozawa R (2007) Measurement of bisphenol A concentrations in human colostrum. Chemosphere 66:1160–1164

    Article  CAS  Google Scholar 

  38. Piao MH, Noh HB, Rahman MA, Won MS, Shim YB (2008) Label free detection of bisphenol A using a potentiometric immunosensor. Electroanalysis 20:30–37

    Article  CAS  Google Scholar 

  39. Yin HS, Zhou YL, Ai SY (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. J Electroanal Chem 626:80–88

    Article  CAS  Google Scholar 

  40. Tsuru N, Kikuchi M, Kawaguch H, Shiraton S (2004) A quartz crystal microbalance sensor coated with MIP for bisphenol A and its properties. Thin Solid Films 499:380–385

    Article  Google Scholar 

  41. Wang FR, Yang JQ, Wu KB (2009) Mesoporous silica based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Anal Chim Acta 638:23–26

    Article  CAS  Google Scholar 

  42. Rahman MA, Shiddiky MJA, Park JS, Shim YB (2007) An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens Bioelectron 22:2464–2470

    Article  CAS  Google Scholar 

  43. Yin HS, Zhou YL, Ai SY, Han RX, Tang TT, Zhu LS (2012) Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAN dentrimers. Microchim Acta 170:99–105

    Google Scholar 

  44. Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2012) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379–386

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Huangshan Young Scholar Fund of Hefei University of Technology (407-037025), Science and Technology Research Project of General Administration of QSIQ of P. R. China (201210127), the 12th Five Years Key Programs (2012BAK17B10, SS2012AA101001), the foundation for the author of national excellent doctoral dissertation of China (No. 201187), National Science Foundation of China (No. 20906039), and the Fundamental Research Funds for the Central Universities (2012HGCX0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zheng or Wei Chen.

Additional information

Feng Xue, Jingjing Wu and Huaqin Chu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 282 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, F., Wu, J., Chu, H. et al. Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180, 109–115 (2013). https://doi.org/10.1007/s00604-012-0909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0909-z

Keywords

Navigation