Skip to main content
Log in

Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Nicotiana, a member of the Solanaceae family, is one of the most important research model plants, and of high agricultural and economic value worldwide. To better understand the substantial and rapid research progress with Nicotiana in recent years, its genomics, genetics, and nicotine gene studies are summarized, with useful web links. Several important genetic maps, including a high-density map of N. tabacum consisting of ~2,000 markers published in 2012, provide tools for genetics research. Four whole genome sequences are from allotetraploid species, including N. benthamiana in 2012, and three N. tabacum cultivars (TN90, K326, and BX) in 2014. Three whole genome sequences are from diploids, including progenitors N. sylvestris and N. tomentosiformis in 2013 and N. otophora in 2014. These and additional studies provide numerous insights into genome evolution after polyploidization, including changes in gene composition and transcriptome expression in N. tabacum. The major genes involved in the nicotine biosynthetic pathway have been identified and the genetic basis of the differences in nicotine levels among Nicotiana species has been revealed. In addition, other progress on chloroplast, mitochondrial, and NCBI-registered projects on Nicotiana are discussed. The challenges and prospects for genomic, genetic and application research are addressed. Hence, this review provides important resources and guidance for current and future research and application in Nicotiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baldwin IT (1988) The alkaloidal responses of wild tobacco to real and simulated herbivory. Oecologia 77:378–381

    Article  Google Scholar 

  • Baldwin IT (1999) Inducible nicotine production in native Nicotiana as an example of phenotypic plasticity. J Chem Ecol 25:3–30

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in Angiosperms. Ann Botany 76:113–176

    Article  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C-Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotech 30:555–561

    Article  CAS  Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A Microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349

    Article  CAS  PubMed  Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Bombarely A, Edwards K, Sanchez-Tamburrino J, Mueller L (2012a) Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective. BMC Genom 13:406

    Article  CAS  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller L, Martin G (2012b) A Draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti C, Cordeiro A, Alcazar R, Borrell A, Culianez-Macia FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120:84–92

    Article  CAS  PubMed  Google Scholar 

  • Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, Chamala S, Leitch AR, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2012) Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 99:372–382

    Article  PubMed  Google Scholar 

  • Chakrabarti M, Meekins KM, Gavilano LB, Siminszky B (2007) Inactivation of the cytochrome P450 gene CYP82E2 by degenerative mutations was a key event in the evolution of the alkaloid profile of modern tobacco. New Phytol 175:565–574

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Botany 92:107–127

    Article  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28:240–252

    Article  PubMed  Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53:87–105

    Article  CAS  PubMed  Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inze D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44:1065–1076

    Article  PubMed  Google Scholar 

  • DeBoer K, Lye J, Aitken C, Su AK, Hamill J (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312

    Article  CAS  PubMed  Google Scholar 

  • Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27

    Article  CAS  PubMed  Google Scholar 

  • Edger P, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 17:699–717

    Article  CAS  PubMed  Google Scholar 

  • Estep MC, DeBarry JD, Bennetzen JL (2013) The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity 110:194–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. error probabilities. Genome Res 8:186–194

    CAS  Google Scholar 

  • Feldman M, Levi A, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059

    Article  CAS  PubMed  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant–pathogen interactions. MPMI 21:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Goodspeed TH (1954) The genus nicotiana: Origins, relationships and evolution of its species in the light of their distribution, morphology and cytogenetics. Chronica Botanica Company, Waltham

    Google Scholar 

  • Greuter W (2000) International Code of Botanical Nomenclature: Saint Louis Code : adopted by the Sixteenth International Botanical Congress. Koeltz Scientific Books, St Louis

    Google Scholar 

  • Heim WG, Sykes KA, Hildreth SB, Sun J, Lu R-H, Jelesko JG (2007) Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. Phytochemistry 68:454–463

    Article  CAS  PubMed  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant cell 6:723–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hildreth SB, Gehman EA, Yang H, Lu R-H, Ritesh KC, Harich KC, Yu S, Lin J, Sandoe JL, Okumoto S, Murphy AS, Jelesko JG (2011) Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. PNAS 108:18179–18184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res

  • Huang X, Han B (2014) Natural variations and Genome-Wide Association Studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. PNAS 100:12265–12270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa M, Shoji T, Kato A, Hashimoto T (2011) Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol 155:2010–2022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with Aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katoh A, Shoji T, Hashimoto T (2007) Molecular cloning of N-methylputrescine oxidase from tobacco. Plant Cell Physiol 48:550–554

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom S-I, Kim Y-M, Lee JM, Lee H-A, Seo E, Choi J, Cheong K, Kim K-T, Jung K, Lee G-W, Oh S-K, Bae C, Kim S-B, Lee H-Y, Kim S-Y, Kim M-S, Kang B-C, Jo YD, Yang H-B, Jeong H-J, Kang W-H, Kwon J-K, Shin C, Lim JY, Park JH, Huh JH, Kim J-S, Kim B-D, Cohen O, Paran I, Suh MC, Lee SB, Kim Y-K, Shin Y, Noh S-J, Park J, Seo YS, Kwon S-Y, Kim HA, Park JM, Kim H-J, Choi S-B, Bosland PW, Reeves G, Jo S-H, Lee B-W, Cho H-T, Choi H-S, Lee M-S, Yu Y, Do Choi Y, Park B-S, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai H-S, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sorensen I, Lee S-J, Kim RW, Choi I-Y, Choi B-S, Lim J-S, Lee Y-H, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82

    Article  Google Scholar 

  • Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160

    Article  CAS  PubMed  Google Scholar 

  • Kronenberger J, Lepingle A, Caboche M, Vaucheret H (1993) Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet 236:203–208

    Article  CAS  PubMed  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature Genet 43:163–168

    Article  CAS  PubMed  Google Scholar 

  • Lackman P, Gonzalez-Guzman M, Tilleman S, Carqueijeiro I, Perez AC, Moses T, Seo M, Kanno Y, Hakkinen ST, Van Montagu MC, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. PNAS 108:5891–5896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linnean Soc 82:651–663

    Article  Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Botany 101:805–814

    Article  CAS  Google Scholar 

  • Lewis RS, Bowen SW, Keogh MR, Dewey RE (2010) Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene. Phytochemistry 71:1988–1998

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linnean Soc 82:599–606

    Article  Google Scholar 

  • Matassi G, Melis R, Macaya G, Bernardi G (1991) Compositional bimodality of the nuclear genome of tobacco. Nucleic Acids Res 19:5561–5567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauro-Herrera M, Wang X, Barbier H, Brutnell TP, Devos KM, Doust AN (2013) Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3(3):283–295

    Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377

    Article  Google Scholar 

  • Morita M, Shitan N, Sawada K, Van Montagu MCE, Inze D, Rischer H, Goossens A, Oksman-Caldentey KM, Moriyama Y, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. PNAS 106:2447–2452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakasugi K, Crowhurst RN, Bally J, Wood CC, Hellens RP, Waterhouse PM (2013) De Novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS ONE 8:e59534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narayan RKJ (1987) Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Syst Evol 157:161–180

    Article  CAS  Google Scholar 

  • Ow DW, De Wet JR, Helinski DR, Howell SH, Wood KV, Deluca M (1986) Transient and stable expression of the firefly Luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  CAS  PubMed  Google Scholar 

  • Parisod C, Mhiri C, Lim KY, Clarkson JJ, Chase MW, Leitch AR, Grandbastien MA (2012) Differential dynamics of transposable elements during long-term diploidization of Nicotiana Section Repandae (Solanaceae) allopolyploid genomes. PLoS ONE 7:e50352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Consortium IWGS, Mayer KFX, Olsen O-A (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ, Goodman MM (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. In. National Academy of Sciences, p 6893

  • Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Renny-Byfield S, Kovařík A, Chester M, Nichols RA, Macas J, Novák P, Leitch AR (2012) Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One 7:e36963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, Nichols RA, Pancholi MR, Grandbastien M-A, Leitch AR (2013) Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J 74:829–839

    Article  CAS  PubMed  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  CAS  PubMed  Google Scholar 

  • Schenke D, Sasabe M, Toyoda K, Inagaki YS, Shiraishi T, Ichinose Y (2003) Genomic structure of the NtPDR1 gene, harboring the two miniature inverted-repeat transposable elements, NtToya1 and NtStowaway101. Genes Genet Syst 78:409–418

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Li C, Zhang F (2006) Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin. J Exp Bot 57:2899–2907

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2011) Nicotine biosynthesis In: Plant metabolism and biotechnology. John Wiley & Sons, Ltd, pp 191–216

  • Shoji T, Hashimoto T (2014) Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco. Phytochemistry. doi:10.1016/j.phytochem.2014.05.017

    Google Scholar 

  • Shoji T, Nakajima K, Hashimoto T (2000) Ethylene suppresses Jasmonate-induced gene expression in nicotine biosynthesis. Plant Cell Physiol 41:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol 49:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant cell 22:3390–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sierro N, Battey J, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch M, Ivanov N (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60

    Article  PubMed Central  PubMed  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5

  • Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. PNAS 102:14919–14924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44:603–617

    Article  CAS  PubMed  Google Scholar 

  • Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303

    Article  PubMed  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:1074–1080

    Article  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    Article  CAS  PubMed  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE (2010) A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J 62:589–600

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Jiao T, Wang F, Li M, Leng X, Gao Y, Li Y, Xiao B, Wu W (2012a) Mapping of quantitative trait loci conferring resistance to brown spot in flue-cured tobacco (Nicotiana tabacum L.). Plant Breeding 131:335–339

    Article  CAS  Google Scholar 

  • Tong Z, Yang Z, Chen X, Jiao F, Li X, Wu X, Gao Y, Xiao B, Wu W (2012b) Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breeding 131:674–680

    Article  CAS  Google Scholar 

  • Wang SS, Shi QM, Li WQ, Niu JF, Li CJ, Zhang FS (2008) Nicotine concentration in leaves of flue-cured tobacco plants as affected by removal of the shoot apex and lateral buds. J Integr Plant Biol 50:958–964

    Article  CAS  PubMed  Google Scholar 

  • Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu F, Eannetta N, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley S (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  PubMed  Google Scholar 

  • Xu B, Sheehan MJ, Timko MP (2004) Differential induction of ornithine decarboxylase (ODC) gene family members in transgenic tobacco (Nicotiana tabacum L. cv. bright yellow 2) cell suspensions by methyl-jasmonate treatment. Plant Growth Regul 44:101–116

    Article  CAS  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Katrien M. Devos of the University of Georgia, USA for her efforts, suggestions, and assistance in editing during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewen Wang.

Additional information

Communicated by J. Graw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2015_989_MOESM1_ESM.xlsx

Supplemental File 1 Short read archive (SRA) resources of Nicotiana in the NCBI. File listed as Nicotiana short read archive resources in the NCBI on April 2nd 2014. (XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Bennetzen, J.L. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol Genet Genomics 290, 11–21 (2015). https://doi.org/10.1007/s00438-015-0989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-0989-7

Keywords

Navigation