Skip to main content

Advertisement

Log in

Design features of offshore oil production platforms influence their susceptibility to biocorrosion

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L−1) levels of hydrogen sulfide and high numbers (107 mL−1) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval JP, Lesongeur F, Raguenes G, Crassous P, Querellou J, Cambon-Bonavita MA (2002) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628. doi:10.1099/00207713-52-5-1621

    CAS  PubMed  Google Scholar 

  • Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P, Garcia JL, Ollivier B (2003) Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deepsea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590. doi:10.1099/ijs.0.02551-0

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213. doi:10.1111/j.1462-2920.2006.01152.x

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E, Brenner A, Kushmaro A (2007) Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microb Ecol 54:439–451. doi:10.1007/s00248-007-9233-2

    Article  CAS  PubMed  Google Scholar 

  • Birkeland NK (2004) The microbial diversity of deep subsurface oil reservoirs. In: R. Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in surface science and catalysis. Elsevier, Vol. 151 pp 385–403 doi:10.1016/S0167-2991(04)80155-1

  • Birkeland N-K (2005) Sulfate-reducing bacteria and archaea. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, D.C., pp 35–54

    Chapter  Google Scholar 

  • Bradley GJ, McGinley HR, Hermsen NL (2011) A global perspective on biocides regulatory issues. OTC 21806. Offshore Tech Conference, Houston, TX, USA, 2–5 May 2011

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsuenenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayol J-L, Ollivier B, Lawson Anani Soh A, Fardeau M-L, Ageron E, Grimont PAD, Prensier G, Guezennec J, Magot M, Garcia J-L (1994) Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int J Syst Bacteriol 44:805–811

    Article  Google Scholar 

  • Chilingar, George V. Mourhatch, Ryan Al-Qahtani, Ghazi D (2008) Fundamentals of corrosion and scaling—for petroleum and environmental engineers. Gulf Publishing Company. Online version available at:http://app.knovel.com/hotlink/toc/id:kpFCSFPEE3/fundamentals-corrosion/fundamentals-corrosion

  • Cluff MA, Hartsock A, MacRae JD, Carter K, Mouser PJ (2014) Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Environ Sci Technol 48:6508–6517. doi:10.1021/es501173p

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard T, Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol 60:291–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM (2009) Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43:7977–7984. doi:10.1021/es9013932

    Article  CAS  PubMed  Google Scholar 

  • Duncan KE, Perez-Ibarra BM, Jenneman G, Busch Harris J, Webb R, Sublette K (2014) The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system. Appl Microbiol Biotech 98:907–918. doi:10.1007/s00253-013-4906-x

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772–1787. doi:10.1111/j.1462-2920.2012.02778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris FG, Jack TR, Bramhill BJ (1992) Corrosion products associated with attached bacteria at an oil field water injection plant. Can J Microbiol 38:1320–1324

    Article  CAS  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand J-C (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  CAS  PubMed  Google Scholar 

  • Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096. doi:10.1128/AEM.01123-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

    Article  CAS  PubMed  Google Scholar 

  • Grimaud R (2010) Chapt. 34. Marinobacter. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 1290–1295. doi:10.1007/978-3-540-77587-4_90

    Google Scholar 

  • Guan J, Zhang BL, Mbadinga SM, Liu JF, Gu JD, Mu BZ (2014) Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl Microbiol Biotechnol 98:1871–1882. doi:10.1007/s00253-013-5152-y

    Article  CAS  PubMed  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237. doi:10.1038/nmeth.1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50(4):1601–1609

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  • Hubert CR, Oldenburg TB, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404. doi:10.1111/j.1462-2920.2011.02521.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingvorsen K, Jørgensen BB (1984) Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol 139:61–66

    Article  CAS  Google Scholar 

  • ISO 15156-2:2009(en) (2009) Petroleum and natural gas industries—materials for use in H2S-containing environments in oil and gas production—Part 2: cracking-resistant carbon and low-alloy steels, and the use of cast irons. Annex D: Recommendations for determining pH. pp. 37–41. International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:15156:-2:ed-2:v1:en Accessed June 7, 2016

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids res 41:e1. doi:10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Ha LT, Watanabe K (2007) Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. Int J Syst Evol Microbiol 57:827–831. doi:10.1099/ijs.0.64823-0

    Article  CAS  PubMed  Google Scholar 

  • L’Haridon S, Reysenbach A-L, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224

    Article  Google Scholar 

  • Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM (2014) Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 30:823–835. doi:10.1080/08927014.2014.931379

    Article  PubMed  Google Scholar 

  • Liang R, Grizzle RS, Duncan KE, McInerney MJ, Suflita JM (2014) Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Frontiers in Microbiology: Microbial Physiology and Metabolism 5:89. doi:10.3389/fmicb.2014.00089

    Article  Google Scholar 

  • Lovley DR, Phillips EJ, Lonergan DJ, Widman PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Mayilraj S, Kaksonen AH, Cord Ruwisch R, Schumann P, Spröer P, Tindall BJ, Spring S (2009) Desulfonauticus autotrophicus sp. nov., a novel thermophilic sulfate-reducing bacterium isolated from oil-production water and emended description of the genus Desulfonauticus. Extremophiles 2:247–255. doi:10.1007/s00792

    Article  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Sepúlveda J, Fernández L, Cayol JL, Thomas P, Ollivier B (2003) Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53:1509–1514. doi:10.1099/ijs.0.02662-0008-0212-4

    Article  CAS  PubMed  Google Scholar 

  • Morrison JM, Murphy CL, Baker K, Zamor RM, Nikolai SJ, Wilder S, Elshahed MS, Youssef NH (2017) Microbial communities mediating algal detritus turnover under anaerobic conditions. Peer J 5:e2803. doi:10.7717/peerj.2803

    Article  PubMed  PubMed Central  Google Scholar 

  • NACE Standard SP0775-(2013) (formerly RP0775). Preparation, installation, analysis, and interpretation of corrosion coupons in oil field operations; NACE International: Houston, TX, 2005; Item No. 21017

  • Nazina TN, Grigor’ian AA, Shestakova NM, Babich TL, Ivoĭlov VS, Feng Q, Ni F, Wang J, She Y, Xiang T, Luo Z, Beliaev SS, Ivanov MV (2007) Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery. Mikrobiologiia 76:329–339

    CAS  PubMed  Google Scholar 

  • Oldham AL, Drilling HS, Stamps BW, Stevenson BS, Duncan KE (2012) Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities. AMB Express 2:60. doi:10.1186/2191-0855-2-60

    Article  PubMed  PubMed Central  Google Scholar 

  • Ollivier B, Cayol J-L (2005) The fermentative, iron-reducing, and nitrate-reducing microorganisms. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, D.C., pp 71–88

    Chapter  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PM, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28. doi:10.1159/000443997

    Article  CAS  PubMed  Google Scholar 

  • Ravot G, Magot M, Ollivier B, Patel BKC, Ageron E, Grimont PAD, Thomas P, Garcia J-L (1997) Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate-reducing bacterium from an African oilfield. FEMS Microbiol Lett 147:81–88. doi:10.1111/j.1574-6968.1997.tb10224.x

    Article  CAS  PubMed  Google Scholar 

  • Ravot G, Casalot L, Ollivier B, Loison G, Magot M (2005) rdlA, a new gene encoding a rhodanese-like protein in Halanaerobium congolense and other thiosulfate-reducing anaerobes. Res Microbiol 156:1031–1038. doi:10.1016/j.resmic.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  • Roalkvam I, Drønen K, Stokke R, Daae FL, Dahle H, Steen IH (2015) Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol 6:987. doi:10.3389/fmicb.2015.00987

    Article  PubMed  PubMed Central  Google Scholar 

  • Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 268:6013–6020. doi:10.1128/AEM.68.12.6013-6020.2002

    Article  Google Scholar 

  • Shaw MP, Hoffmann H, Home M (2016) Case study: comparison of microbial monitoring techniques used in the field and how their complementarity can be harnessed to build a full picture of the microbial life in the field. In: SPE International Oilfield Corrosion Conference and Exhibition, Aberdeen, Scotland, UK, 9–10 May, SPE-179936-MS

  • Simankova MV, Chernych NA, Zavarzin GA (1993) Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst Appl Microbiol 16:385–389. doi:10.1016/S0723-2020(11)80270-5

    Article  CAS  Google Scholar 

  • Skovhus TL, Eckert RB (2014) Practical aspects of MIC detection, monitoring and management in the oil and gas industry. Paper #3920, Corrosion 2014, San Antonio TX, USA, March 9–13, 2014

  • Skovhus TL, Lee JS, Little BJ (2017) Predominant MIC mechanisms in the oil and gas industry. Chapt. 4, pp. 75–86 In Skovhus TL, Enning E, and Lee JS (eds.) Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry. Routledge. doi:10.1201/9781315157818-5

  • Stevenson BS, Drilling HS, Lawson PA, Duncan KE, Parisi VA, Suflita JM (2011) Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure. Environ Microbiol 13:1078–1090. doi:10.1111/j.1462-2920.2010.02413.x

    Article  CAS  PubMed  Google Scholar 

  • Ulrich GA, Krumholz LR, Suflita JM (1997) A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microbiol 63:1627–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Videla HA, Guiawet PS, Saravia SG, Allegreti P, Furlong J (2000) Microbial degradation of film forming inhibitors and its possible effects on corrosion inhibition performance. In: NACE Corrosion 2000 (Paper no. 00386), Houston, TX, NACE International, 2000

  • Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N (2016) Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol 82:2545–2554. doi:10.1128/AEM.03842-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giluliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7(9):1426–1441

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. In: Allen I, Laskin SS, Geoffrey MG (eds) Adv Appl Microbiol, vol 66. Academic Press, Burlington, pp 141–251

    Google Scholar 

  • Zeikus JG, Hegge PW, Thompson TE, Phelps TJ (1983) Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr Microbiol 9:225–234. doi:10.1007/BF01567586

    Article  CAS  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:1–7. doi:10.1093/bioinformatics/btt593

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Total S.A. for providing the samples and Charles Primeaux for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen E. Duncan.

Ethics declarations

Funding

This work was funded by the University of Oklahoma Biocorrosion Center: SRA FY10-ORA3-24.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This research does not contain any studies with human participants or animals.

Electronic supplementary material

.

ESM 1

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncan, K.E., Davidova, I.A., Nunn, H.S. et al. Design features of offshore oil production platforms influence their susceptibility to biocorrosion. Appl Microbiol Biotechnol 101, 6517–6529 (2017). https://doi.org/10.1007/s00253-017-8356-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8356-8

Keywords

Navigation