Skip to main content

Laboratory Protocols for Investigating Microbial Souring and Potential Treatments in Crude Oil Reservoirs

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Oilfield souring is most frequently caused by the activities of sulfate-reducing microorganisms as they reduce sulfate to sulfide as their terminal electron-accepting process. Souring poses serious health and safety hazards to oilfield workers and can be detrimental to oil production processes by potentially plugging reservoirs and/or leading to infrastructure corrosion. Oilfield souring often occurs during secondary recovery operations based on waterflooding, especially when the water source contains an ample amount of sulfate that can stimulate sulfate reducers associated with the reservoir or other locations within an oil recovery operation (such as topside facilities). Water chemistry, temperature, potential carbon sources, and microbial communities all play a role in determining whether souring will occur in a given field. Approaches such as biocide, nitrate, or, most recently, perchlorate treatments have shown good success in controlling souring in laboratory experiments and/or in field applications. This chapter outlines a variety of protocols that can be used in a laboratory setting to study souring potential in a given oilfield and to test methods of souring control that may be applied to that field or oilfields in general. Methods of field sample collection, water chemistry analyses, microbiological analyses, and laboratory incubation strategies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate‐reducing bacteria. Crit Rev Environ Sci Technol 26:155–187

    Article  CAS  Google Scholar 

  2. Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282

    Article  CAS  PubMed  Google Scholar 

  3. Bødtker G, Thorstenson T, Lillebø BL, Thorbjørnsen BE, Ulvøen RH, Sunde E, Torsvik T (2008) The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. J Ind Microbiol Biotechnol 35:1625–1636

    Article  CAS  PubMed  Google Scholar 

  4. Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    Article  CAS  PubMed  Google Scholar 

  5. Wolicka D, Borkowski A (2012) Microorganisms and crude oil. In: Romero-Zerón L (ed) Introduction to enhance oil recovery (EOR) processes and bioremediation of oil-contaminated sites. In Tech, Rijeka, Croatia

    Google Scholar 

  6. Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington, DC

    Google Scholar 

  7. Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

    Article  CAS  PubMed  Google Scholar 

  8. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sediment Geol 140:143–175

    Article  CAS  Google Scholar 

  9. Zhang S, Zhu G, Liang Y, Dai J, Liang H, Li M (2005) Geochemical characteristics of the Zhaolanzhuang sour gas accumulation and thermochemical sulfate reduction in the Jixian Sag of Bohai Bay Basin. Org Geochem 36:1717–1730

    Article  CAS  Google Scholar 

  10. Jones C, Downward B, Edmunds S, Hernandez K, Curtis T, Smith F (2011) A novel approach to using THPS for controlling reservoir souring. Paper #11219, Corrosion 2011 conference, Houston, 13–17 Mar

    Google Scholar 

  11. Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol 13:25–97

    Article  CAS  Google Scholar 

  12. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM press, Washington, DC

    Google Scholar 

  14. Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl Environ Microbiol 77:4744–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen C-I, Reinsel MA, Mueller RF (1994) Kinetic investigation of microbial souring in porous media using microbial consortia from oil reservoirs. Biotechnol Bioeng 44:263–269

    Article  CAS  PubMed  Google Scholar 

  16. Gittel A, Sorensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jenneman GE, Moffitt PD, Bala GA, Webb RH (1999) Sulfide removal in reservoir brine by indigenous bacteria. SPE Prod Facil 14:219–225

    Article  CAS  Google Scholar 

  18. Larsen J (2002) Downhole nitrate applications to control sulfate reducing bacteria activity and reservoir souring. Paper #02025, Corrosion 2002 conference, Denver, 7–11 Apr

    Google Scholar 

  19. Khatib ZI, Salanitro JP (1997) Reservoir souring: analysis of surveys and experience in sour waterfloods. SPE Paper #38795, SPE annual technical conference and exhibition, San Antonio, 5–8 Oct

    Google Scholar 

  20. Agrawal A, An D, Cavallaro A, Voordouw G (2014) Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields. Appl Microbiol Biotechnol 98:8017–8029

    Article  CAS  PubMed  Google Scholar 

  21. Liebensteiner MG, Tsesmetzis N, Stams AJ, Lomans BP (2014) Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs. Front Microbiol 5:428. doi:10.3389/fmicb.2014.00428

    Article  PubMed  PubMed Central  Google Scholar 

  22. Williams TM, Cooper LE (2014) The environmental fate of oil and gas biocides: a review. Paper #3876, Corrosion 2014 NACE conference, San Antonio, 9–13 Mar

    Google Scholar 

  23. Giangiacomo LA, Dennis DM (1997) Field testing of the biocompetitive exclusion process for control of iron and hydrogen sulfides. SPE #38351, SPE rocky mountain regional meeting, Casper, 18–21 May

    Google Scholar 

  24. Voordouw G, Nemati M, Jenneman GE (2002) Use of nitrate reducing, sulfide oxidizing bacteria to reduce souring in oil fields: interactions with SRB and effects on corrosion. Paper #02034, Corrosion 2002 NACE conference, Denver, 7–11 Apr

    Google Scholar 

  25. Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5:607–617

    Article  CAS  PubMed  Google Scholar 

  26. Sturman PJ, Goeres DM, Winters MA (1999) Control of hydrogen sulfide in oil and gas wells with nitrite injection. SPE #56772, SPE annual technical conference and exhibition. Houston, 3–6 Oct

    Google Scholar 

  27. Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27:80–86

    Article  CAS  PubMed  Google Scholar 

  28. Reinsel MA, Sears JT, Stewart PS, Mclnerney MJ (1996) Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. J Ind Microbiol 17:128–136

    Article  CAS  Google Scholar 

  29. Myhr S, Lillebø BLP, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    Article  CAS  PubMed  Google Scholar 

  30. Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H, Piceno YM, Carlson HK, Conrad ME, Anderson G, Coates JD (2014) Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front Microbiol 5:315. doi:10.3389/fmicb.2014.00315

    Article  PubMed  PubMed Central  Google Scholar 

  31. Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518

    Article  CAS  PubMed  Google Scholar 

  32. Solórzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  Google Scholar 

  33. Oblinger JL, Koburger JA (1975) Understanding and teaching the most probable number technique. J Milk Food Technol 38:540–545

    Google Scholar 

  34. Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, Fournier J, Voordouw G, Gieg LM (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446

    Article  CAS  PubMed  Google Scholar 

  35. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  36. Cord-Ruwisch R (1985) A quick method for determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36

    Article  CAS  Google Scholar 

  37. Postgate JR (1963) Versatile medium for the enumeration of sulfate-reducing bacteria. Appl Microbiol 11:265–267

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up flow packed bioreactors. Biotechnol Prog 19:338–345

    Article  CAS  PubMed  Google Scholar 

  39. Callbeck CM, Dong X, Chatterjee I, Agrawal A, Caffrey SM, Sensen CW, Voordouw G (2011) Microbial community succession in a bioreactor modeling a souring low-temperature oil reservoir subjected to nitrate injection. Appl Microbiol Biotechnol 91:799–810

    Article  CAS  PubMed  Google Scholar 

  40. Berdugo-Clavijo C, Gieg LM (2014) Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol 5:197. doi:10.3389/fmicb.2014.00197

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hulecki JC, Foght JM, Fedorak PM (2010) Storage of oil field produced waters alters their chemical and microbiological characteristics. J Ind Microbiol Biotechnol 37:471–481

    Article  CAS  PubMed  Google Scholar 

  42. Linder A, Bauer S (1993) Effect of temperature during storage and sampling procedure on ammonia concentration in equine blood plasma. Eur J Clin Chem Clin Biochem 31:473–476

    Google Scholar 

  43. Tabatabai MA (1974) A rapid method for the determination of sulfate in water samples. Environ Lett 7:237–243

    Article  CAS  Google Scholar 

  44. APHA (American Public Health Association) (1992) Standard methods for the examination of wastewater. American Water Works Association and Water Pollution Control Federation, Washington, DC, pp 439–440

    Google Scholar 

  45. Widdel F (2010) Cultivation of anaerobic microoorganisms with hydrocarbons as growth substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3787–3798

    Chapter  Google Scholar 

  46. Wolfe RS (2011) Techniques for cultivating methanogens. Methods Enzymol 494:1–22

    Article  CAS  PubMed  Google Scholar 

  47. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One. doi:10.1371/journal.pone.0030087

    Google Scholar 

Download references

Acknowledgments

We thank Johanna Voordouw, Yin Shen, Dr. Rhonda Clark, Dr. Dongshan An, Dr. Chuan Chen, and Dr. Sandra Wilson for their roles in developing and optimizing many of the protocols described in this chapter. LMG was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery grant, while YX and GV were supported by an NSERC Industrial Research Chair Award (to GV) which is also funded by Baker Hughes, BP, Computer Modelling Group Limited, ConocoPhillips Company, Intertek, Dow Microbial Control, Enbridge, Enerplus Corporation, Oil Search Limited, Shell Global Solutions International BV, Suncor Energy Inc., and Yara Norge AS, as well as by Alberta Innovates Energy and Environment Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Gieg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Xue, Y., Voordouw, G., Gieg, L.M. (2015). Laboratory Protocols for Investigating Microbial Souring and Potential Treatments in Crude Oil Reservoirs. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_115

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_115

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49138-6

  • Online ISBN: 978-3-662-49140-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics