Skip to main content
Log in

Isolation and description ofHaloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A new halophilic species is described that was isolated from the hypersaline (>20%) surface sediments of Great Salt Lake, Utah, via transfer from MPN end-dilution tubes that contained a complex organic medium. The organism was an obligate anaerobe that proliferated optimally at approximately 13% salt, but did not grow significantly at <2% or ≥30% salt. It stained Gram-negative, was nonmotile, nonsporing, and contained an outer-wall membranous layer. The complex lipids of the organism were fatty acid esters that did not change dramatically during growth at 5% or 25% NaCl. The DNA base composition was 27.0±1 mol% guanosine plus cytosine. The temperature range for growth was >5°C and <60°C, the pH range was between 6.0 and 9.0. The doubling time for growth in complex medium with 25% NaCl was 7 h. The organism utilized carbohydrates, peptides, and amino acids. Butyrate, acetate, propionate. H2, and CO2 were the major fermentation end products formed. Glucose, mannose, fructose,n-acetyl glucosamine, and pectin were used as energy sources for growth. Methylmercaptan was produced from methionine degradation. The nameHaloanaerobium praevalens gen. nov. sp. nov. is proposed for the type strain GSL which has been deposited as DSM 2228. The taxonomic relationships ofH. praevalens to other obligate halophiles and anaerobes, as well as its biological role in the Great Salt Lake microbial ecosystem, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Baddily, J., Buchanan, J. G., Handschumacher, R. E., Prescott, J. F. 1956. Chemical studies on the biosynthesis of purine nucleotides. I. The preparation of beta-glycylglucosamine. Journal of the Chemical Society, pp. 2818–2823.

  2. Baumgartner, T. G. 1937. The salt limits and thermal stability of a new species of anaerobic halophiles. Food Research2:321–329.

    Google Scholar 

  3. Bayley, S. T., Morton, R. A. 1978. Recent developments in the molecular biology of extremely halophilic bacteria. CRC Critical Reviews in Microbiology6:151–205.

    PubMed  Google Scholar 

  4. Bligh, E. G., Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology37:911–917.

    PubMed  Google Scholar 

  5. Braun, D., Gibbons, N. E. 1960. Turbidity and morphology of red halophilic bacteria as influenced by sodium chloride concentration. Canadian Journal of Microbiology6:535–543.

    PubMed  Google Scholar 

  6. Buchanan, R. E., Gibbons, N. E. 1974. Bergey's manual of determinative bacteriology, 8th ed. Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  7. DeLey, J. 1970. Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. Journal of Bacteriology101: 738–754.

    PubMed  Google Scholar 

  8. Elazari-Volcani, B. 1943. Bacteria in the bottom sediments of the Dead Sea. Nature152:274–275.

    Google Scholar 

  9. Hanes, C. S., Isherwood, F. A. 1949. Separation of phosphoric esters on the filter paper chromatogram. Nature (London)164:1107–1110.

    Google Scholar 

  10. Hartmann, R., Sickinger, H. O., Oesterhelt, D. 1980. Anaerobic growth of halobacteria. Proceedings of the National Academy of Sciences of the United States of America77:3821–3825.

    PubMed  Google Scholar 

  11. Imhoff, J. F., Trüper, H. G. 1981.Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkalinophilic phototrophic bacterium. Zentralblatt fuer Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abteilung I OriginaleC2:228–234.

    Google Scholar 

  12. Jørgensen, B. B., Cohen, Y. 1977. Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography22(4):657–667.

    Google Scholar 

  13. Kates, M. 1972. Ether-linked lipids in extremely halophilic bacteria, pp. 284–301. In: Synder, F. (ed.), Ether lipids in chemistry and biology. New York: Academic Press.

    Google Scholar 

  14. Kushner, D. J., Bayley, S. T., Boring, J., Kate, M., Gibbons, N. E. 1964. Morphological and chemical properties of cell envelopes of the extreme halophileHalobacterium cutirubrum. Canadian Journal of Microbiology10:483–495.

    PubMed  Google Scholar 

  15. Langworthy, T. A., Mayberry, W. R., Smith, P. F. 1976. A sulfonolipid and novel glucoamidyl glycolipids from the extreme thermoacidophileBacillus acidocaldarius. Biochimica et Biophysica Acta431:550–569.

    PubMed  Google Scholar 

  16. Langworthy, T. A. 1982. Lipids ofThermoplasma. Methods in Enzymology88:396–406.

    Google Scholar 

  17. Langworthy, T. A., Tornabene, T. G., Holzer, G. 1982. Lipids of archaebacteria. Zentralblatt fuer Bakteriologie Parasitenkunde, Infektionskrankheiten und Hygiene Abteilung I OriginaleC3:228–244.

    Google Scholar 

  18. Larsen, H. 1967. Biochemical aspects of extreme halophilism. Advances in Microbiol Physiology1:97–132.

    Google Scholar 

  19. Larsen, H. 1981. The familyHalobacteriaceae, p. 985–994. In: Starr, M. P., Stolp, H., Trüper, H. G., Ballows, A., Schlegel, H. G. (eds.), The prokaryotes. New York: Springer Verlag.

    Google Scholar 

  20. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology3:208–218.

    Google Scholar 

  21. Matheson, A. T., Sprott, G. D., McDonald, I., Tessier, H. 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentration and morphology. Canadian Journal of Microbiology22:780.

    PubMed  Google Scholar 

  22. Moench, T., Zeikus, J. G. 1983. Nutritional growth requirements forButyribacterium methylotrophicum on single carbon substrates and glucose. Current Microbiology (in press).

  23. Mullakhanbhai, M. F., Larsen, H. 1975.Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Archives of Microbiology104:207–214.

    PubMed  Google Scholar 

  24. Nelson, D. R., Zeikus, J. G. 1974. Rapid method for the radioisotopic analysis of gaseous products of anaerobic metabolism. Applied Environmental Microbiology28:258–261.

    Google Scholar 

  25. Nissenbaum, A. 1975. The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology2:139–161.

    Google Scholar 

  26. Post, J. F. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology3:143–165.

    Google Scholar 

  27. Raymond, J. C., Sistrom, W. R. 1969.Ectothiorhodospira halophila, a new species of the genusEctothiorhodospira. Archives of Microbiology69(2):121–126.

    Google Scholar 

  28. Schink, B., Ward, J. C., Zeikus, J. G. 1981. Microbiology of wetwood: role of anaerobic bacterial populations in living trees. Journal of General Microbiology123:313–322.

    Google Scholar 

  29. Schink, B., Thompson, T. E., Zeikus, J. G. 1982. Characterization ofPropionispira arboris gen. nov., a nitrogen fixing anaerobe common to wetwoods of living trees. Journal of General Microbiology128:2771–2779.

    Google Scholar 

  30. Schink, B., Lupton, F. S., Zeikus, J. G. 1983. A radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen consuming bacteria in extreme environments. Applied Environmental Microbiology45:1491–1500.

    Google Scholar 

  31. Vaskovsky, V. E., Kostetsky, E. Y. 1968. Improved spray for detection of phospholipids on thin-layer chromatograms. Journal of Lipid Research9:396.

    PubMed  Google Scholar 

  32. Vreeland, R. H., Litchfield, C. P., Martin, E. L., Elliot, E. 1980.Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. International Journal of Systematic Bacteriology30:485–495.

    Google Scholar 

  33. Woese, C. R., Magrum, L. J., Fox, G. E. 1978. Archaebacteria. Journal of Molecular Evolution11:245–252.

    PubMed  Google Scholar 

  34. Zeikus, J. G., Bowen, V. G., 1975. Comparative ultrastructure of methanogenic bacteria. Canadian Journal of Microbiology21:119–121.

    Google Scholar 

  35. Zeikus, J. G., Hegge, P. W., Anderson, M. A. 1979.Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive anaerobic bacterium. Archives of Microbiology122:41–48.

    Google Scholar 

  36. Zeikus, J. G., Ben-Bassat, A., Hegge, P. 1980. Microbiology of methanogenesis in thermal volcanic enviroments. Journal of Bacteriology143:432–440.

    PubMed  Google Scholar 

  37. Zeikus, J. G. 1983. Metabolic communication between biodegradative populations in nature, pp. 423–462. In: Slater, H., Whittenbury, E., and Wimpenny, J. (eds.), Microbes in their natural environments. Society of General Microbiology Symposium 34. London: Cambridge University Press.

    Google Scholar 

  38. Zeikus, J. G. 1983. Metabolism of one carbon compounds by chemotrophic anaerobes. Advances in Microbial Physiology24:215–299.

    PubMed  Google Scholar 

  39. Zinder, S. H., Brock, T. D. 1978. Methane, carbon dioxide and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Applied Environmental Microbiology35:344–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeikus, J.G., Hegge, P.W., Thompson, T.E. et al. Isolation and description ofHaloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Current Microbiology 9, 225–233 (1983). https://doi.org/10.1007/BF01567586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567586

Keywords

Navigation