Skip to main content

Preclinical Animal Models for Cancer Research and Drug Discovery

  • Chapter
  • First Online:
Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach

Abstract

Cancer has a complex biology and has been characterized by several hallmarks during its multistep progression such as sustaining proliferation, evading growth suppressors, resisting cell death, stimulating angiogenesis, activation of invasion and metastasis, etc. There is an increased understanding of complex biology of cancer in the past few decades; still this disease remains the primary cause of death in developed and developing countries all over the globe.

The efforts to reduce global cancer burden are mainly focused on developing innovative diagnostic and therapeutic tools. In this process of translation, animal models play a crucial role in translating diagnostic and therapeutic innovations to human clinical trials. Animal models are historically used in medical research initially for understanding of basic anatomy and physiology till developing new treatments for various diseases including cancer. The early twentieth century has seen a dramatic increase in the use of animal models, and since then the refinements of these models are happening untiringly. The refinements or improvements in model systems are required with increase in our understanding of human and animal biology as well as disease processes. This chapter deals with anticancer drug developments before and after arrival of immunocompromised animals in cancer research and various thought processes going on during the last century with respect to anticancer drug research. The authors have touched upon various advantages and disadvantages of model systems used in drug development. This chapter also includes current approaches towards cancer model systems along with upcoming models showing potential to expedite drug development process with reduction in attrition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen C, Shen MM (2002) Mouse models of prostate carcinogenesis. Trends Genet 18(5):S1–S5

    Article  CAS  PubMed  Google Scholar 

  • American Cancer Society Cancer facts and figures 2014. Accessed April 2 Afhwcoagcrdwa-p

    Google Scholar 

  • Aytes A, Molleví DG, Martinez-Iniesta M, Nadal M, Vidal A, Morales A et al (2012) Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol Carcinog 51(9):746–753

    Article  CAS  PubMed  Google Scholar 

  • Baioni E, Scanziani E, Vincenti MC, Leschiera M, Bozzetta E, Pezzolato M et al (2017) Estimating canine cancer incidence: findings from a population-based tumour registry in northwestern Italy. BMC Vet Res 13(1):203

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C et al (2011) A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 1(6):508–523

    Article  CAS  PubMed  Google Scholar 

  • Boone JD, Dobbin ZC, Straughn JM Jr, Buchsbaum DJ (2015) Ovarian and cervical cancer patient derived xenografts: the past, present, and future. Gynecol Oncol 138(2):486–491

    Article  PubMed  Google Scholar 

  • Boven E, Winograd B, Berger DP, Dumont MP, Braakhuis BJ, Fodstad Ø et al (1992) Phase II preclinical drug screening in human tumor xenografts: a first European multicenter collaborative study. Cancer Res 52(21):5940–5947

    CAS  PubMed  Google Scholar 

  • Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J et al (2010) Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 135(1):84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Shultz LD, Luban J, Greiner DL (2013) Overcoming current limitations in humanized mouse research. J Infect Dis 208(Suppl 2):S125–SS30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr BI (1985) Chemical carcinogens and inhibitors of carcinogenesis in the human diet. Cancer 55(S1):218–224

    Article  CAS  PubMed  Google Scholar 

  • Choi YY, Lee JE, Kim H, Sim MH, Kim K-K, Lee G et al (2016) Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci Rep 6:22172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connors T, Roe F (1964) Antitumour agents. Evaluation of drug activities. Pharmacometrics 2:827–874

    Google Scholar 

  • Cook JW, Hieger I, Kennaway EL, Mayneord WV (1932) The production of cancer by pure hydrocarbons.—Part I. Proce R Soc Lond Ser B 111(773):455–484

    Article  CAS  Google Scholar 

  • Decker S, Sausville E (2011) Perspectives on the history and evolution of tumor models. Tumor models in cancer research. Springer, New York, pp 3–20

    Book  Google Scholar 

  • DeRose YS, Wang G, Lin Y-C, Bernard PS, Buys SS, Ebbert MT et al (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  • Doetschman T, Azhar M (2012) Cardiac-specific inducible and conditional gene targeting in mice. Circ Res 110(11):1498–1512

    Article  CAS  PubMed  Google Scholar 

  • Ericsson AC, Crim MJ, Franklin CL (2013) A brief history of animal modeling. Mo Med 110(3):201

    PubMed  PubMed Central  Google Scholar 

  • Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A et al (2008) Establishment of patient-derived non–small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14(20):6456–6468

    Article  CAS  PubMed  Google Scholar 

  • Fiebig H (1988) Comparison of tumor response in nude mice and in patients. Human tumour xenografts in anticancer drug development. Springer, Berlin, pp 25–30

    Book  Google Scholar 

  • Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Findlay GM (1928) Ultra-violet light and skin cancer. Lancet 212:1070–1073

    Article  Google Scholar 

  • Forkert P-G (2010) Mechanisms of lung tumorigenesis by ethyl carbamate and vinyl carbamate. Drug Metab Rev 42(2):355–378

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Laguna I, Uson M, Rajeshkumar N, Tan AC, De Oliveira E, Karikari C et al (2011) Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res 17(17):5793–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovkina TV, Dudley JP, Ross SR (1998) B and T cells are required for mouse mammary tumor virus spread within the mammary gland. J Immunol 161(5):2375–2382

    CAS  PubMed  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ, Ebert KM et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hansen K, Khanna C (2004) Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur J Cancer 40(6):858–880

    Article  CAS  PubMed  Google Scholar 

  • Hernandez B, Adissu H, Wei B-R, Michael H, Merlino G, Simpson R (2018) Naturally occurring canine melanoma as a predictive comparative oncology model for human mucosal and other triple wild-type melanomas. Int J Mol Sci 19(2):394

    Article  PubMed Central  CAS  Google Scholar 

  • Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20(1):206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homburger F, Russfield A, Baker J, Tregier A, Kenney R, Crooker C et al (1962) Experimental chemotherapy in chemically induced mouse tumors and their transplants. Cancer Res 22(3):368–374

    CAS  PubMed  Google Scholar 

  • Hong SG, Kim MK, Jang G, Oh HJ, Park JE, Kang JT et al (2009) Generation of red fluorescent protein transgenic dogs. Genesis 47(5):314–322

    Article  CAS  PubMed  Google Scholar 

  • Hursting SD, Nunez NP, Patel AC, Perkins SN, Lubet RA, Barrett JC (2005) The utility of genetically altered mouse models for nutrition and cancer chemoprevention research. Mutat Res 576(1–2):80–92

    Article  CAS  PubMed  Google Scholar 

  • Ikawa M, Kominami K, Yoshimura Y, Tanaka K, Nishimune Y, Okabe M (1995) A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Lett 375(1–2):125–128

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Fujimoto S, Ogawa M (1983) Antitumor efficacy of seventeen anticancer drugs in human breast cancer xenograft (MX-1) transplanted in nude mice. Cancer Chemother Pharmacol 10(3):182–186

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Teng L, Shen Y, He K, Xu Z, Li G (2010) Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol 12(7):473–480

    Article  PubMed  Google Scholar 

  • Jin K, He K, Han N, Li G, Wang H, Xu Z et al (2011) Establishment of a PDTT xenograft model of gastric carcinoma and its application in personalized therapeutic regimen selection. Hepato-Gastroenterology 58(110–111):1814–1822

    CAS  PubMed  Google Scholar 

  • Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goéré D, Mariani P et al (2012) Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 18(19):5314–5328

    Article  CAS  PubMed  Google Scholar 

  • Jung J (2014) Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res 30(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennaway E (1955) The identification of a carcinogenic compound in coal-tar. Br Med J 2(4942):749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ et al (2013) A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol 7(4):776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523

    Article  CAS  PubMed  Google Scholar 

  • Khleif SN, Curt GA (2000) Animal models in developmental therapeutics. Holland-Frei Cancer Medicine, 5th edn. BC Decker, Hamilton

    Google Scholar 

  • Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51:285–322

    Article  CAS  PubMed  Google Scholar 

  • Kimple RJ, Harari PM, Torres AD, Yang RZ, Soriano BJ, Yu M et al (2013) Development and characterization of HPV-positive and HPV-negative head and neck squamous cell carcinoma tumorgrafts. Clin Cancer Res 19(4):855–864

    Article  CAS  PubMed  Google Scholar 

  • Kinosita R (1936) Researches on the carcinogenesis of the various chemical substances. Gann 30:423–426

    Google Scholar 

  • Kong D, Yamori T (2012) JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg Med Chem 20(6):1947–1951

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1929) The progress of physiology. Am J Physiol Legacy Content 90(2):243–251

    Article  Google Scholar 

  • Lawley PD (1994) Historical origins of current concepts of carcinogenesis. Advances in cancer research. Elsevier, Burlington, pp 17–111

    Google Scholar 

  • Li S, Shen D, Shao J, Crowder R, Liu W, Prat A et al (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4(6):1116–1130

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Hicklin D (2011) Human tumor xenograft efficacy models. Tumor models in cancer research. Springer, New York, pp 99–124

    Book  Google Scholar 

  • Lunardi A, Nardella C, Clohessy JG, Pandolfi PP (2014) Of model pets and cancer models: an introduction to mouse models of cancer. Cold Spring Harbor Protocols 2014(1):pdb.top069757

    Article  PubMed  Google Scholar 

  • Ma H, Li X, Yang Z, Okuno S, Kawaguchi T, Yagi S, Bouvet M, Hoffman RM (2011) High Antimetastatic efficacy of MEN4901/T-0128, a novel Camptothecin Carboxymethyldextran conjugate. J Surg Res 171(2):684–690

    Article  CAS  PubMed  Google Scholar 

  • Magee P, Barnes J (1956) The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br J Cancer 10(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee P, Barnes J (1967) Carcinogenic nitroso compounds. Advances in cancer research. Elsevier, New York, pp 163–246

    Google Scholar 

  • Marangoni E, Poupon M-F (2014) Patient-derived tumour xenografts as models for breast cancer drug development. Curr Opin Oncol 26(6):556–561

    Article  CAS  PubMed  Google Scholar 

  • Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998

    Article  CAS  PubMed  Google Scholar 

  • Miller JA (1991) The Need for Epidemiological Studies of the Medical Exposures of Japanese Patients to the Carcinogen Ethyl Carbamate (Urethane) from 1950 to 1975. Jpn J Cancer Res Gann 82(12):1323

    Article  CAS  PubMed  Google Scholar 

  • Miller J, Miller E (1947) The metabolism and carcinogenicity of p-dimethylaminoazobenzene and related compounds in the rat. Cancer Res 7(1):39–41

    CAS  PubMed  Google Scholar 

  • Moro M, Bertolini G, Tortoreto M, Pastorino U, Sozzi G, Roz L (2012) Patient-derived xenografts of non small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. Biomed Res Int 2012

    Google Scholar 

  • Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2(2):247

    Article  CAS  PubMed  Google Scholar 

  • National Cancer Institute. Developmental therapeutics program. Data retrieval and testing decisions. (2015)

    Google Scholar 

  • Némati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L et al (2010) Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin Cancer Res 16(8):2352–2362

    Article  PubMed  Google Scholar 

  • Nicol CJ, Yoon M, Ward JM, Yamashita M, Fukamachi K, Peters JM et al (2004) PPARγ influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 25(9):1747–1755

    Article  CAS  PubMed  Google Scholar 

  • Orban PC, Chui D, Marth JD (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci 89(15):6861–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8(2):147

    Article  CAS  PubMed  Google Scholar 

  • Parrales A, McDonald P, Ottomeyer M, Roy A, Shoenen FJ, Broward M et al (2018) Comparative oncology approach to drug repurposing in osteosarcoma. PLoS One 13(3):e0194224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinello K, Niza-Ribeiro J, Fonseca L, de Matos A (2019) Incidence, characteristics and geographical distributions of canine and human non-Hodgkin’s lymphoma in the Porto region (North West Portugal). Vet J 245:70

    Article  CAS  PubMed  Google Scholar 

  • Plowman J, Dykes DJ, Hollingshead M, Simpson-Herren L, Alley MC (1997) Human tumor xenograft models in NCI drug development. Anticancer drug development guide. Springer, New York, pp 101–125

    Book  Google Scholar 

  • Pott P (1776) CHIRURGICAL OBSERVATIONS relative to the CATARACT, the POLYPUS of the NOSE, the CANCER of the SCROTUM, the different Kinds of RUPTURES, and the MORTIFICATION of the TOES and FEET. The weekly entertainer and west of England miscellany. 5(129):622–625

    Google Scholar 

  • Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehn L (1895) Blasengeschwure bei Fuchsinarbeitern. Arch Klin Chir 50:588–600

    Google Scholar 

  • Reyes G, Villanueva A, García C, Sancho FJ, Piulats J, Lluís F et al (1996) Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res 56(24):5713–5719

    CAS  PubMed  Google Scholar 

  • Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. The Company of Biologists Ltd

    Book  Google Scholar 

  • Ruddell A, Mezquita P, Brandvold KA, Farr A, Iritani BM (2003) B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am J Pathol 163(6):2233–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rygaard J, Poulsen CO (1969) Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathologica Microbiologica Scandinavica 77(4):758–760

    Article  CAS  Google Scholar 

  • Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y et al (2001) Diphtheria toxin receptor–mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8):746

    Article  CAS  PubMed  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459(7246):523

    Article  CAS  PubMed  Google Scholar 

  • Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N et al (2017) The oncopig cancer model: an innovative large animal translational oncology platform. Front Oncol 7:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiffman JD, Breen M (2015) Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc B Biol Sci 370(1673):20140231

    Article  Google Scholar 

  • Segaoula Z, Primot A, Lepretre F, Hedan B, Bouchaert E, Minier K et al (2018) Isolation and characterization of two canine melanoma cell lines: new models for comparative oncology. BMC Cancer 18(1):1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61

    Article  CAS  PubMed  Google Scholar 

  • Staquet M, Byar D, Green S, Rozencweig M (1983) Clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy. Cancer Treat Rep 67(9):753–765

    CAS  PubMed  Google Scholar 

  • Storrs EE, Walsh G, Burchfield H, Binford C (1974) Leprosy in the armadillo: new model for biomedical research. Science 183(4127):851–852

    Article  CAS  PubMed  Google Scholar 

  • Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11(3):971–981

    CAS  PubMed  Google Scholar 

  • Sultan F, Ganaie BA (2018) Comparative oncology: integrating human and veterinary medicine. Open Vet J 8(1):25–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H, Wang H, Taylor R, Risbridger G (2010) Establishment of a xenograft model of human prostate cancer in mouse. Zhonghua Yi Xue Za Zhi 90(30):2136–2139

    CAS  PubMed  Google Scholar 

  • Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui H (1918) Über das künstlich erzeugte Cancroid bei der Maus. Gann 12(2):17

    Google Scholar 

  • Vineis P, Pirastu R (1997) Aromatic amines and cancer. Cancer Causes Control 8(3):346–355

    Article  CAS  PubMed  Google Scholar 

  • Vollmer G (2003) Endometrial cancer: experimental models useful for studies on molecular aspects of endometrial cancer and carcinogenesis. Endocr Relat Cancer 10(1):23–42

    Article  CAS  PubMed  Google Scholar 

  • Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9(11):4227–4239

    PubMed  Google Scholar 

  • Weisburger EK, Weisburger JH (1958) Chemistry, carcinogenicity, and metabolism of 2-fluorenamine and related compounds. Adv Cancer Res 5:331–431

    Google Scholar 

  • Williams SA, Anderson WC, Santaguida MT, Dylla SJ (2013) Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Investig 93(9):970

    Article  PubMed  Google Scholar 

  • Winograd B, Boven E, Lobbezoo M, Pinedo H (1987) Human tumor xenografts in the nude mouse and their value as test models in anticancer drug development. In Vivo (Athens, Greece) 1(1):1–13

    CAS  Google Scholar 

  • Withrow SJ, Page R, Vail DM (2013) Withrow and MacEwen’s small animal clinical oncology. Elsevier Health Sciences, St. Louis

    Google Scholar 

  • Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G (2000) Transgenic technology in farm animals-progress and perspectives. Exp Physiol 85(6):615–625

    Article  CAS  PubMed  Google Scholar 

  • Wongsrikeao P, Saenz D, Rinkoski T, Otoi T, Poeschla E (2011) Antiviral restriction factor transgenesis in the domestic cat. Nat Methods 8(10):853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Gong S, Roy-Burman P, Lee P, Culig Z (2013) Current mouse and cell models in prostate cancer research. Endocr Relat Cancer 20(4):R155–RR70

    Article  CAS  PubMed  Google Scholar 

  • Yamagiwa K, Ichikawa K (1918) Experimental study of the pathogenesis of carcinoma. J Cancer Res 3(1):1–29

    Google Scholar 

  • Zhuo Y, Wu Y, Guo A, Chen S, Su J (2010) Establishment and its biological characteristics of patient-derived lung cancer xenograft models. Zhongguo fei ai za zhi 13(6):568–574

    CAS  PubMed  Google Scholar 

  • Zvibel I, Smets F, Soriano H (2002) Anoikis: roadblock to cell transplantation? Cell Transplant 11(7):621–630

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhumal, A., Bendale, K., Chaudhari, P. (2019). Preclinical Animal Models for Cancer Research and Drug Discovery. In: Bose, K., Chaudhari, P. (eds) Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach. Springer, Singapore. https://doi.org/10.1007/978-981-32-9816-3_9

Download citation

Publish with us

Policies and ethics