Skip to main content

Human Tumor Xenograft Efficacy Models

  • Chapter
  • First Online:
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Mouse models of cancer have consistently been used to qualify new anticancer drugs for development of human clinical trials. The most used models are xenografts of human tumors grown in immunodeficient mice. Retrospective preclinical–clinical correlation studies indicate that xenograft models are very useful and the models continue to make contributions to critical clinical development choices. However, improvements must be made to increase their values. Here, we review the value and the limitations of xenograft models, and discuss how to enhance their role in developing new anticancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grever MR, Schepartz SA, Chabner BA. The National Cancer Institute: Cancer drug ­discovery and development program. Semin Oncol. 1992;19:622–38.

    PubMed  CAS  Google Scholar 

  2. Law LW, Dunn TB, Boyle PJ, Miller JH. Observations on the effect of a folic-acid antagonist on transplantable lymphoid leukemias in mice. J Natl Cancer Inst. 1949;10:179–92.

    PubMed  CAS  Google Scholar 

  3. Dawe CJ, Potter M. Morphologic and biological progression of a lymphoid neoplasm of the mouse in vivo and in vitro (abstr). Am J Pathol. 1957;33:603.

    Google Scholar 

  4. Teicher BA. In vivo tumor response end points. In: Teicher BA, editor. Tumor models in cancer research. Totowa, NJ: Humana Press. 2002. p. 593–616.

    Google Scholar 

  5. Fiebig HH, Dengler WA, Roth T. Human tumor xenografts: predictivity, characterization, and discovery of new-anticancer agents. In: Fiebig HH, Burger AM, editors. Relevance of tumor models for anti-cancer drug development. Contrib Oncol, Vol 54, Basel: Karger; 1999. p. 29–50.

    Google Scholar 

  6. Amadori A, Belardelli F, Cavallo F, Ferraris PC, De Rossi A, Doria G, Forni G, Forni M, Giavazzi R, Jemms C, Lollini P-L, Lusso P, Mezzanzanica D, Nanni P, Parmiani G, Roncells S, Scala G, Sensi ML. Mind the mouse! A consensus vie on the use of immunodeficient mice in immunology and oncology. J Immunol Res. 1992;4:1–5.

    Google Scholar 

  7. Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther. 2009;85:217–21.

    Article  PubMed  CAS  Google Scholar 

  8. Troiani T, Schettino C, Martinelli E, Morgillo F, Tortora G, Ciardiello F. The use of xenograft models for the selection of cancer treatments with the EGFR as an example. Crit Rev Oncol Hematol. 2008;65:200–211.

    Article  PubMed  Google Scholar 

  9. Rosell R, de Las Penas R, Balana C, Santarpia M, Salazar F, de Aguirre I, Reguart N, Villa S, Wei J, Ramirez JL, Molina MA, Ramon y Cajal S, Jablons D, Taron M. Translational research in glioblastoma multiforme: molecular criteria for patient selection. Future Oncol. 2008;4:219–28.

    Article  PubMed  CAS  Google Scholar 

  10. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumor to the mouse mutant “nude.” Acta Pathol Microbiol Scand. 1969;77:758–60.

    Article  PubMed  CAS  Google Scholar 

  11. Giovanella BC, Yim SO, Stgehlin JS, Williams LJ, Jr. Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst. 1972;48:1531–33.

    PubMed  CAS  Google Scholar 

  12. Fiebig HH, Burger AM. Human tumor xenografts and explants. In: Teicher BA, editor. Tumor models in cancer research. Totowa, NJ: Humana Press. 2002, p. 113–37.

    Google Scholar 

  13. Sausville EA, Feigal E. Evolving approaches to cancer drug discovery and development at the National Cancer Institute. Ann Oncol. 1999;10:1287–92.

    Article  PubMed  CAS  Google Scholar 

  14. Boyd MR. Status of the NCI preclinical antitumor drug discovery screen. In: DeVita VT Jr., Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology, updates, vol. 3. Philadelphia: Lippincott. 1989, p. 1–12.

    Google Scholar 

  15. Shoemaker RH. The NCI60 human tumor cell line anticancer drug screen. Nat Rev Cancer 2006;6:813–23.

    Article  PubMed  CAS  Google Scholar 

  16. Plowman J, Dykes DJ, Melinda H, Simpson-Herren L, Alley MC. Human tumor xenograft models in NCI Drug Development. In: Teicher BA, editor. Anticancer drug development guide. Totowa, NJ: Humana Press. 1997, p. 101–26.

    Google Scholar 

  17. Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell. 1984;37:367–79.

    Article  PubMed  CAS  Google Scholar 

  18. Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice ­expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315:115–22.

    Article  PubMed  CAS  Google Scholar 

  19. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318:533–38.

    Article  PubMed  CAS  Google Scholar 

  20. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell. 1984;38:627–37.

    Article  PubMed  CAS  Google Scholar 

  21. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature. 1992;359:295–300.

    Article  PubMed  CAS  Google Scholar 

  22. Donehower LA, Harvey M, Slagele BL, McArthur MJ, Montgomery CA, Jr, Butel, JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to ­spontaneous tumours. Nature. 1992;356:215–21.

    Article  PubMed  CAS  Google Scholar 

  23. Jackson-Grusby L. Modeling cancer in mice. Oncogene. 2002;21:5504–14.

    Article  PubMed  CAS  Google Scholar 

  24. Gura T. Systems for identifying new drugs are often faulty. Science. 1997;278:1041–42.

    Article  PubMed  CAS  Google Scholar 

  25. Rosenberg MP, Bortner, D. Why transgenic and knockout animal models should be used (for drug efficacy studies in cancer). Cancer Metastasis Rev. 1999;17:295–99.

    Article  CAS  Google Scholar 

  26. Kerbel RS. What is the optimal rodent model for anti-tumor drug testing? Cancer Metastasis Rev. 1999;17:301–4.

    Article  CAS  Google Scholar 

  27. Clarke R, Dickson RB. Animal models of tumor onset, growth, and metastasis. In: Bertino JR, et al. editors. Encyclopedia of cancer. New York: Academic Press. 1997, p. 10–21.

    Google Scholar 

  28. Clark EA, Shultz LD, Pollack SB. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics. 1981;12:601–13.

    Article  PubMed  CAS  Google Scholar 

  29. Williams SS, Alosco TR, Croy BA, Bankert RB. The study of human neoplastic disease in severe combined immunodeficient mice. Lab Anim Sci. 1993;43:139–46.

    PubMed  CAS  Google Scholar 

  30. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335:256–59.

    Article  PubMed  CAS  Google Scholar 

  31. Bankert RB, Hess SD, Egilmez NK. SCID mouse models to study human cancer pathogenesis and approaches to therapy: potential, limitations, and future directions. Front Biosci. 2002;7:c44–62.

    Article  PubMed  Google Scholar 

  32. Schuler W, Bosma MJ. Nature of the scid defect: a defective VDJ recombinase system. Curr Top Microbiol Immunol. 1989;152:55–62.

    Article  PubMed  CAS  Google Scholar 

  33. Croy BA, Linder KE, Yager JA. Primer for non-immunologists on immune-deficient mice and their applications in research. Comp Med. 2001;51:300–13.

    PubMed  CAS  Google Scholar 

  34. Mc Cormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukemia – development, application, and future perspectives. Leukemia. 2005;19:687–706.

    Article  CAS  Google Scholar 

  35. Yang S, Dong Q, Yao M, Shi M, Ye J, Zhao L, Su J, Gu W, Xie W, Wang K, Du Y, Li Y, Huang Y. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potently by (99m)Tc-MDP bone scintigraphy. Nucl Med Biol. 2009;36:313–21.

    Article  PubMed  CAS  Google Scholar 

  36. Pearson T, Greiner DL, Shultz LD. Humanized SCID mouse models for biomedical research. Curr Top Microbiol Immunol. 2008;324:25–51.

    Article  PubMed  CAS  Google Scholar 

  37. Gao J, Tombal B, Isaacs JT. Rapid in situ hybridization technique for detecting malignant mouse cell contamination in human xenograft tissue from nude mice and in vitro cultures from such xenografts. Prostate. 1999;39:67–70.

    Article  PubMed  CAS  Google Scholar 

  38. Horvath G, Ferno M, Baldetorp B, Cameron R, Ranstam J. Progression of human endometrial adenocarcinoma heterotransplanted into nude mice from hormone-sensitive to hormone resistant growth. In Vivo. 1991;5:185–90.

    PubMed  CAS  Google Scholar 

  39. Rydell R, Lybak S, Wennerberg J, Willen R. Increased response to cisplatin after long-term serial passage of a squamous cell carcinoma xenograft. In Vivo. 1991;5(1):23–27.

    PubMed  CAS  Google Scholar 

  40. Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 1999;17:279–84.

    Article  CAS  Google Scholar 

  41. Fidler IJ. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am. 2001;10:257–69.

    PubMed  CAS  Google Scholar 

  42. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and ­evaluation: a bridge to the clinic. Invest New Drugs. 1999;17:343–59.

    Article  PubMed  CAS  Google Scholar 

  43. Cruz-Munoz W, Man S, Xu P, Kerbel RS. Development of a preclinical model of ­spontaneous human melanoma central nervous system metastasis. Cancer Res. 2008;68:4500–5.

    Article  PubMed  CAS  Google Scholar 

  44. Man S, Munoz R, Kerbel RS. Development of models in mice of advanced visceral ­metastatic disease for anti-cancer drug testing. Cancer Metastasis Rev. 2007;26:737–47.

    Article  PubMed  Google Scholar 

  45. Press JZ, Kenyon JA, Xue H, Miller MA, De Luca A, Miller DM, Huntsman DG, Gilks CB, McAlpine JN, Wang YZ. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice slow genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol. 2008;110:256–64.

    Article  PubMed  CAS  Google Scholar 

  46. Brodie A, Jelovac D, Long BJ. Predictions from a preclinical model: studies of aromatase inhibitors and antiestrogens. Clin Cancer Res. 2003;9:455S–59S.

    PubMed  CAS  Google Scholar 

  47. van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer research. Prostate. 2000;43:263–71.

    Article  PubMed  CAS  Google Scholar 

  48. Bove K, Lincoln DW, Wood PA, Hrushesky WJ. Fertility cycle influence on surgical breast cancer cure. Breast Cancer Res Treat. 2002;75:65–72.

    Article  PubMed  CAS  Google Scholar 

  49. Buhler KR, Santucci RA, Royai RA, Whitney SC, Vessella RL, Lange PH, Ellis WJ. Intermittent androgen suppression in the LuCaP 23.12 prostate cancer xenograft model. Prostate. 2000;43:63–70.

    Article  PubMed  CAS  Google Scholar 

  50. Gleave ME, Miyake H, Zellweger T, Chi K, July L, Nelson C, Rennie P. Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/testosterone-repressed prostate message 2, to enhance androgen sensitivity and chemosensitivity in prostate cancer. Urology. 2001;58(2 Suppl 1):39–49.

    Article  PubMed  CAS  Google Scholar 

  51. Clarke R. Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat. 1996;39:69–86.

    Article  PubMed  CAS  Google Scholar 

  52. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR. Basement membrane complexes with biological activity. Biochemistry. 1986;25:312–18.

    Article  PubMed  CAS  Google Scholar 

  53. Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere C-M, Foidart J-M. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br J Cancer. 1993;68:909–15.

    Article  PubMed  CAS  Google Scholar 

  54. Eccles SA. Models for evaluation of targeted therapies of metastatic disease. In: Teicher BA, editor. Tumor models in cancer research. Totowa, NJ: Humana Press. 2002, p. 293–319.

    Google Scholar 

  55. Giovanella BC. Xenotransplantation of human cell cultures in nude mice. In: Teicher BA, editor. Tumor models in cancer research. Totowa, NJ: Humana Press. 2002, p. 93–97.

    Google Scholar 

  56. Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis. 1997;15:272–306.

    Article  PubMed  CAS  Google Scholar 

  57. Verschraegen C, Giovanella BC, Mendoza JT, Kozielski Aj, Stehlin JS, Jr. Specific organ metatases of human melanoma cells injected into the arterial circulation of nude mice. Anticancer Res. 1991;11:529–36.

    PubMed  CAS  Google Scholar 

  58. Potmesil M, Vardeman D, Kozielski AJ, Mendoza J, Stehlin JS, Giovanells BC. Growth inhibition of human cancer metastases by camptothecins in newly developed xenograft models. Cancer Res. 1995;55:5637–41.

    PubMed  CAS  Google Scholar 

  59. Chen L, Ter Haar G, Hill CR, Eccles SA, Box G. Treatment of implanted liver tumors with focused ultrasound. Ultrasound Med Biol. 1998;24:1475–88.

    Article  PubMed  CAS  Google Scholar 

  60. Nam D-H, Jeon H-M, Kim S, Kim MH, Lee Y-J, Lee MS, Kim H, Joo KM, Lee D-S, Price JE, Bang SI, Park W-Y. Activation of notch signaling in a xenograft model of brain ­metastasis. Clin Cancer Res. 2008;14:4059–66.

    Article  PubMed  CAS  Google Scholar 

  61. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31:229–34.

    Article  PubMed  CAS  Google Scholar 

  62. Geran RI, Greenberg NH, Macdonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep. 1972;3(Part 3):51.

    Google Scholar 

  63. Zubrod CG, Schepartz S, Leiter J, Endicott KM, Carrese LM, Baker CG. The chemotherapy program of the National Cancer Institute: history, analysis, and plans. Cancer Chemother Rep. 1966;50:349–540.

    Google Scholar 

  64. Goldin A, Schepartz SA, Venditti JM, DeVita VT Jr. Historical development and current ­strategy of the National Cancer Institute Drug Development Program. In: DeVita VT Jr, Busch H, editors. Methods in cancer research, vol. XVI. New York: Academic. 1979, p. 165–245.

    Google Scholar 

  65. DeVita VT Jr, Goldin A, Oliverio VT, Rubin D, Muggia FM, Henney J, Wiernik PW, Schepartz S, Ziegler J. The drug development and clinical trials programs of the Division of Cancer Treatment, National Cancer Institute. Cancer Clin Trials. 1979;2:195–216.

    Google Scholar 

  66. Girit IC, Jure-Kunkel M, McIntyre KW. A structured light-based system for scanning subcutaneous tumors in laboratory animals. Comp Med. 2008;58:264–70.

    PubMed  CAS  Google Scholar 

  67. Wu J, Houghton PJ. Interval approach to assessing antitumor activity for tumor xenograft studies. Pharmaceut Statist. 2009; 755–762.

    Google Scholar 

  68. Conway TF Jr, Sabel MS, Sugano M, Frelinger JG, Egilmez NK, Chen F, Bankert RB. Growth of human tumor xenografts in SCID mice quantified using an immunoassay for tumor marker protein in serum. J Immunol Methods. 2000;233:57–65.

    Article  PubMed  CAS  Google Scholar 

  69. Hoffman R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 2002;3:546–56.

    Article  PubMed  CAS  Google Scholar 

  70. Contag CH, Jenkins K, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia. 2000;2:41–52.

    Article  PubMed  CAS  Google Scholar 

  71. Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, Van Noorden CJ, van Tellingen O. Biotechniques. 2007;43:7–13.

    Article  PubMed  Google Scholar 

  72. Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC. Preclinical assessment of anti-cancer therapeutic strategies using in vivo videomicroscopy. Cancer Metastasis Rev. 1998–99;17:263–69.

    Article  PubMed  Google Scholar 

  73. MacDonald IC, Groom AC, Chambers AF. Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays. 2002;24:885–93.

    Article  PubMed  CAS  Google Scholar 

  74. Jain RK, Schlenger K, Hockel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med. 1997;3:1203–8.

    Article  PubMed  CAS  Google Scholar 

  75. Teicher BA, Ara G, Herbst R, Takeuchi H, Keyes S, Northey D. PEG-hemoglobin: effects on tumor oxygenation and response to chemotherapy. In Vivo. 1997;11:301–11.

    PubMed  CAS  Google Scholar 

  76. Furman-Haran E, Grobgeld D, Margalit R, Degani H. Response of MCF7 human breast cancer to tamoxifen: evaluation by the three-time-point, contrast-enhanced magnetic resonance imaging method. Clin Cancer Res. 1998;4:2299–2304.

    PubMed  CAS  Google Scholar 

  77. Leach MO. Application of magnetic resonance imaging to angiogenesis in breast cancer. Breast Cancer Res. 2001;3:22–27.

    Article  PubMed  CAS  Google Scholar 

  78. Gupta N, Price PM, Aboagye EO. PET for in vivo pharmacokinetic and pharmacodynamic measurements. Eur J Cancer. 2002;38:2094–2107.

    Article  PubMed  CAS  Google Scholar 

  79. Malich A, Bohm T, Fritsch T, Facius M, Freesmeyer MG, Anderson R, Fleck M, Kaiser WA. Animal-based model to investigate the minimum tumor size detectable with an electrical impedance scanning technique. Acad Radiol. 2003;10:37–44.

    Article  PubMed  Google Scholar 

  80. Kennel SJ, Davis IA, Branning J, Pan H, Kabalka GW, Paulus MJ. High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys. 2000;27:1101–7.

    Article  PubMed  CAS  Google Scholar 

  81. Waterhouse RN, Chapman J, Izard B, Donald A, Belbin K, O’Brien JC, Collier TL. Examination of four 123I-labeled piperidine-based sigma receptor ligands as potential melanoma imaging agents: initial studies in mouse tumor models. Nucl Med Biol. 1997;24:587–93.

    Article  PubMed  CAS  Google Scholar 

  82. Hollingshead MG, Alley MC, Camalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MR. In vivo cultivation of tumor cells in hollow fibers. Life Sci. 1995;57:131–41.

    Article  PubMed  CAS  Google Scholar 

  83. Curwen JO, Wedge SR. The use and refinement of rodent models in anti-cancer drug ­discovery: a review. Altern Lab Anim. 2009;37:173–80.

    PubMed  CAS  Google Scholar 

  84. Sausville EA, Burger AM. Contributions of human xenografts to anticancer drug ­development. Cancer Res. 2006;66:3351–54.

    Article  PubMed  CAS  Google Scholar 

  85. Hao D, Rowinsky EK. Inhibiting signal transduction: recent advances in the development of receptor tyrosine kinase and Ras inhibitors. Cancer Invest. 2002;20:387–404.

    Article  PubMed  CAS  Google Scholar 

  86. Liu M, Bishop WR, Nielsen LL, Bryant MS, Kirschmeier P. Orally bioavailable farnesyl transferase inhibitors as anticancer agents in transgenic and xenograft models. Methods Enzymol. 2001;333:306–18.

    Article  PubMed  CAS  Google Scholar 

  87. Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Lipari P, Malkowski M, Ferrari E, Nielsen L, Prioli N, Dell J, Sinha D, Syed J, Korfmacher WA, Nomeir AA, Lin CC, Wang L, Taveras AG, Doll RJ, Njoroge FG, Mallams AK, Remiszewski S, Catino JJ, Girijavallabhan VM, Bishop WR. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 1998;58:4947–56.

    PubMed  CAS  Google Scholar 

  88. Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Li Z, Dell J, Lipari P, Malkowski M, Prioli N, Rossman RR, Korfmacher WA, Nomeir AA, Lin CC, Mallams AK, Doll RJ, Catino JJ, Girijavallabhan VM, Kirschmeier P, Bishop WR. Effects of SCH 59228, an orally bioavailable farnesyl protein transferase inhibitor, on the growth of oncogene-transformed fibroblasts and a human colon carcinoma xenograft in nude mice. Cancer Chemother Pharmacol. 1999;43:50–58.

    Article  PubMed  CAS  Google Scholar 

  89. Wang YC, Kulp SK, Wang D, Yang CC, Sargeant AM, Hung JH, Kashida Y, Yamaguchi M, Chang GD, Chen CS. Targeting endoplasmic reticulum stress and Akt with OSU-03012 and gefitinib or erlotinib to overcome resistance to epidermal growth factor receptor inhibitors. Cancer Res. 2008;68:2820–30.

    Article  PubMed  CAS  Google Scholar 

  90. Wu W, O’Reilly MS, Langley RR, Tsan RZ, Baker CH, Bekele N, Tang XM, Onn A, Fidler IJ, Herbst RS. Expression of epidermal growth factor (EGF)/transforming growth factor-alpha by human lung cancer cells determines their response to EGF receptor kinase inhibition in the lung of mice. Mol Cancer Ther. 2007;6:2652–63.

    Article  PubMed  CAS  Google Scholar 

  91. Das AK, Sato M, Story MD, Peyton M, Graves R, Redpath S, Girard L, Gazdar AF, Shay JW, Minna JD, NIrodi CS. Non-small-cell lung cancers with kinase domain mutations in the epidermal growth factor receptor are sensitive to ionizing radiation. Cancer Res. 2006;66:9601–8.

    Article  PubMed  CAS  Google Scholar 

  92. Tang Z, Du R, Jiang S, Wu C, Barkauskas DS, Richey J, Molter J, Lam M, Flask C, Gerson S, Dowlati A, Liu L, Lee Z, Halmos B, Wang Y, Kern JA, Ma PC. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99:911–22.

    Article  PubMed  CAS  Google Scholar 

  93. Morgan MA, Parsels LA, Kollar LE, Normolle DP, Maybaum J, Lawrence TS. The combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation in pancreatic cancer. Clin Cancer Res. 2008;14:5142–49.

    Article  PubMed  CAS  Google Scholar 

  94. Rose WC, Wild R. Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumor xenografts. Clin Cancer Res. 2004;10:7413–17.

    Article  PubMed  CAS  Google Scholar 

  95. Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, Bugat R, Canal P, Allal C. In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemother Pharmacol. 2006;57:709–18.

    Article  PubMed  CAS  Google Scholar 

  96. Milas L, Mason K, Hunter N, Petersen S, Yamakawa M, Ang K, Mendelsohn J, Fan Z. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res. 2000;6:701–8.

    PubMed  CAS  Google Scholar 

  97. Feng FY, Lopez CA, Normolle DP, Varambally S, Li X, Chun PY, Davis MA, Lawrence TS, Nyati MK. Effect of epidermal growth factor receptor inhibitor class in the treatment of head and neck cancer with concurrent radiochemotherapy in vivo. Clin Cancer Res. 2007;13:2512–18.

    Article  PubMed  CAS  Google Scholar 

  98. Rosenthal EL, Kulbersh BD, Duncan RD, Zhang W, Magnuson, JS, Carroll WR, Zinn K. In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope. 2006;116:1636–41.

    Article  PubMed  Google Scholar 

  99. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, Bortolon E, Ichetovkin M, Chen C, McNabola A, Wilkie D, Carter CA, Taylor IC, Lynch M, Wilhelm S. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007;59:561–74.

    Article  PubMed  CAS  Google Scholar 

  100. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–58.

    Article  PubMed  CAS  Google Scholar 

  101. Wang Z, Zhou J, Fan J, Qiu SJ, Yu Y, Huang XW, Tang ZY. Effect of rapamycin alone and in combination with sorafenib in and orthotopic model of human hepatocellular carcinoma. Clin Cancer Res. 2008;14:5124–30.

    Article  PubMed  CAS  Google Scholar 

  102. Hillman GG, Singh-Gupta V, Zhang H, Al-Bashir AK, Katkuri Y, Li M, Yunker CK, Patel AD, Abrams J, Haacke EM. Dynamic contrast-enhanced magnetic resonance imaging of vascular changes induced by sunitinib in papillary renal cell carcinoma xenograft tumors. Neoplasia. 2009;11:910–20.

    PubMed  CAS  Google Scholar 

  103. Ikezoe T, Yang Y, Nishioka C, Bandobashi K, Nakatani H, Taguchi T, Koeffler HP, Taguchi H. Effect of SU11248 on gastrointestinal stromal tumor-T1 cells: enhancement of growth inhibition via inhibition of 3-kinase/Akt/mammalian target of rapamycin signaling. Cancer Sci. 2006;97:945–51.

    Article  PubMed  CAS  Google Scholar 

  104. Khalili P, Arakelian A, Chen G, Singh G, Rabbani SA. Effect of Herceptin on the development and progression of skeletal metastases in a xenograft model of human breast cancer. Oncogene. 2005;24:6657–66.

    Article  PubMed  CAS  Google Scholar 

  105. Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD, Steeg PS. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst. 2008;100:1092–1103.

    Article  PubMed  CAS  Google Scholar 

  106. Barok M, Balazs M, Nagy P, Rakosy Z, Treszl A, Toth E, Juhasz I, Park JW, Isola J, Vereb G, Szollosi J. Trastuzumab decreases the number of circulating and disseminated tumor cells despite trastuzumab resistance of the primary tumor. Cancer Lett. 2008;260:198–208.

    Article  PubMed  CAS  Google Scholar 

  107. Hardee ME, Eapen RJ, Rabbani ZN, Dreher MR, Marks J, Blackwell KL, Dewhirst MW. Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+ tumors. Cancer Chemother Pharmacol. 2009;63:219–28.

    Article  PubMed  CAS  Google Scholar 

  108. Kedrin D, Wyckoff J, Boimel PJ, Coniglio SJ, Hynes NE, Arteaga CL, Segall JE. ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasion. Clin Cancer Res. 2009;15:3733–39.

    Article  PubMed  CAS  Google Scholar 

  109. Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, Hoffmann B, Klar U. Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol. 2009;11:158–66.

    Article  PubMed  CAS  Google Scholar 

  110. Keir ST, Dolan ME, Pegg AE, Lawless A, Moschel RC, Bigner DD, Friedman HS. O6-benzylguanine-mediated enhancement of nitrosourea activity in Mer-central nervous system tumor xenografts – implications for clinical trials. Cancer Chemother Pharmacol. 2000;45:437–40.

    Article  PubMed  CAS  Google Scholar 

  111. Kitange GJ, Carlson BL, Mladek AC, Decker PA, Schroeder MA, Wu W, Grogan PT, Giannini C, Bellman KV, Buckner JC, James CD, Sarkaria JN. Evaluation of MGMT promoter methylation status and correlation with temozolomice response in orthotopic glioblastoma xenograft model. J Neurooncol. 2009;92:23–31.

    Article  PubMed  CAS  Google Scholar 

  112. Golemovic M, Verstovsek S, Giles F, Cortes J, Manshouri T, Manley PW, Mestan J, Dugan M, Alla d L, Griffin JD, Arlinghaus RB, Sun T, Kantarjian H, Beran M. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin Cancer Res. 2005;11:4941–47.

    Article  PubMed  CAS  Google Scholar 

  113. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K, Flefleh C, Castaneda S, Inigo I, Kan D, Wen ML, Kramer R, Blackwood-Chirchir A, Lee FY. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamics biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res. 2006;12:7180–86.

    Article  PubMed  CAS  Google Scholar 

  114. Prenen H, Deroose C, Vermaelen P, Sciot R, Debiec-Rychter M, Stroobants S, Mortelmans L, Schoffski P, Van Oosterom A. Establishment of a mouse gastrointestinal stromal tumor model and evaluation of response to imatinib by small animal positron emission tomography. Anticancer Res. 2006;26:1247–52.

    PubMed  CAS  Google Scholar 

  115. Damiano V, Caputo R, Garofalo S, Bianco R, Rosa R, Merola G, Gelardi T, Racioppi L, Fontanini G, De Placido S, Kandimalla ER, Agrawal S, Ciardiello F, Tortora G. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc Natl Acad Sci USA. 2007;104:12468–473.

    Article  PubMed  CAS  Google Scholar 

  116. Lee FY, Covello KL, Castaneda S, Hawken DR, Kan D, Lewin A, Wen ML, Ryseck RP, Fairchild CR, Fargnoli J, Kramer R. Synergistic antitumor activity of ixabepilone (BMS-247550) plus bevacizumab in multiple in vivo tumor models. Clin Cancer Res. 2008;14:8123–31.

    Article  PubMed  CAS  Google Scholar 

  117. Mizobe T, Ogata Y, Murakami H, Akagi Y, Ishibashi N, Mori S, Sasatomi T, Shirouzu K. Efficacy of the combined use of bevacizumab and irinotecan as a postoperative adjuvant chemotherapy in colon carcinoma. Oncol Rep. 2008;20:517–23.

    PubMed  CAS  Google Scholar 

  118. Zhong W, Hansen R, Li B, Cai Y, Salvador C, Moore GD, Yan J. Effect of yeast-derived beta-glucan in conjugation with bevacizumab for the treatment of human lung adenocarcinoma in subcutaneous and orthotopic xenograft models. J Immunother. 2009;32:703–12.

    Article  PubMed  CAS  Google Scholar 

  119. Higgins B, Kolinsky K, Linn M, Adames V, Zhang YE, Moisa C, Dugan U, Heimbrook D, Packman K. Antitumor activity of caecitabine and bevacizumab combination in a human estrogen receptor-negative breast adenocarcinoma xenograft model. Anticancer Res. 2007;27:2279–87.

    PubMed  CAS  Google Scholar 

  120. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R)2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14:5459–65.

    Article  PubMed  CAS  Google Scholar 

  121. Mathieu V, De Neve N, Le Mercier M, Dewelle J, Gaussin J-F, Dehoux M, Kiss R, Lefranc F. Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia. 2008;10:1383–92.

    PubMed  CAS  Google Scholar 

  122. Siemann DW, Shi W. Dual targeting of tumor vasculature: combining avastin and vascular disrupting agents (CA4P or Oxi4503). Anticancer Res. 2008;28:2027–31.

    PubMed  CAS  Google Scholar 

  123. Egawa T, Kubota T, Suto A, Otani Y, Furukawa T, Saikawa Y, Watanabe M, Kumai K, Kitajima M. Antitumor activity of doxorubicin in combination with docetaxel against human breast cancer xenografts. In Vivo. 2003;17:23–28.

    PubMed  CAS  Google Scholar 

  124. Ciomi M, Croci V, Stellari F, Amboldi N, Giavarini R, Pesenti E. Antitumor activity of edtecarin in breast carcinoma models. Cancer Chemother Pharmacol. 2007;60:229–35.

    Article  CAS  Google Scholar 

  125. Fulzele SV, chatterjee A, Shaik MS, Jackson T, Ichite N, Singh M. 15-Deoxy-delta 12, 14-prostaglandin J2 enhances docetaxel anti-tumor activity against A549 and H460 non-small-cell lung cancer cell lines and xenograft tumors. Anticancer Drugs. 2007;18:65–78.

    Article  PubMed  CAS  Google Scholar 

  126. Liu G, Taylor SA, Marrinan CH, Hsieh Y, Bishop WR, Kirschmeier P, Long BJ. Continuous and intermittent dosing of lonafarnib potentiates the therapeutic efficacy of docetaxel on preclinical human prostate cancer models. Int J Cancer. 2009;125:2711–20.

    Article  PubMed  CAS  Google Scholar 

  127. Tanaka M, Obata T, Sasaki T. Evaluation of antitumor effects of docetaxel (taxotere) on human gastric cancers in vitro and in vivo. Eur J Cancer. 1996;32A:226–30.

    Article  PubMed  CAS  Google Scholar 

  128. Bradshaw-Pierce EL, Steinhauer CA, Raben D, Gustafson DL. Pharmacokinetic-directed dosing of vandetanib and docetaxel in a mouse model of human squamous cell carcinoma. Mol Cancer Ther. 2008;7:3006–17.

    Article  PubMed  CAS  Google Scholar 

  129. Yamada H, Maki H, Takeda Y, Orita S. Evaluation of combined nedaplatin and docetaxel therapy for human head and neck cancer in vivo. Anticancer Res. 2006;26(2A):989–94.

    PubMed  CAS  Google Scholar 

  130. Blackledge G, Averbuch S, Kay A, Barton J. Anti-EGF receptor therapy. Prostate Cancer Prostatic Dis. 2000;3:296–302.

    Article  PubMed  CAS  Google Scholar 

  131. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res. 2001;7:2958–70.

    PubMed  CAS  Google Scholar 

  132. Sirotnak FM, She Y, Lee F, Chen J, Scher HI. Studies with CWR22 xenografts in nude mice suggest that ZD1839 may have a role in the treatment of both androgen-dependent and androgen-independent human prostate cancer. Clin Cancer Res. 2002;8:3870–76.

    PubMed  CAS  Google Scholar 

  133. Morris C. The role of EGFR-directed therapy in the treatment of breast cancer. Breast Cancer Res Treat. 2002;75:S51–S55.

    Article  PubMed  CAS  Google Scholar 

  134. Steiner P, Joynes C, Bassi R, Wang W, Tonra JR, Hadari YR, Hicklin DJ. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clin Cancer Res. 2007;13:1540–51.

    Article  PubMed  CAS  Google Scholar 

  135. Liu G, Marrinan CH, Taylor, SA, Black S, Basso BD, Kirschmeier P, Bishop WR, Liu M, Long BJ. Enhancement of the antitumor activity of tamoxifen and anastrozole by the farnesyltransferase inhibitor lonafarnib (SCH66336). Anticancer Drugs. 2007;18:923–31.

    Article  PubMed  CAS  Google Scholar 

  136. Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009;37:114–22.

    Article  PubMed  CAS  Google Scholar 

  137. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, Bianco AR, Tortora G. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res. 2000;6:2053–63.

    PubMed  CAS  Google Scholar 

  138. Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res. 2000;6:4885–92.

    PubMed  CAS  Google Scholar 

  139. Giovanella BC, Vardeman DM, Williams LJ, Taylor DJ, et al. Heterotransplantation of human breast carcinomas in nude mice: correlation between nude takes, poor prognosis and overexpression of the HER-2/neu oncogene. Int J Cancer. 1991;47:66–71.

    Article  PubMed  CAS  Google Scholar 

  140. Nielsen LL, Gurnani M, Porter G, Trexler S, Emerson D, Tyler RD. Development of a nude mouse model of ras-mediated neoplasia using WR21 cells from a transgenic mouse salivary tumor. In Vivo. 1994;8:295–302.

    PubMed  CAS  Google Scholar 

  141. Tonra JR, Prewett M, Corcoran E, Hicklin DJ, Zhu Z. In vivo method for establishing ­synergy between antibodies to epidermal growth factor receptor and vascular endothelial growth factor receptor-2. Methods Mol Biol. 2009;525:545–57.

    Article  PubMed  CAS  Google Scholar 

  142. Bozec A, Sudaka A, Fischel J-L, Brunstein M-C, Etienne-Grimaldi M-C, Milano G. Combined effects of bevacizumab with erlotinib and irradiation: a preclinical study on a head and neck cancer orthotopic model. Br J Cancer. 2008;99:93–99.

    Article  PubMed  CAS  Google Scholar 

  143. Shepard HM, Jin P, Slamon DJ, Pirot Z, Maneval DC. Herceptin. Handb Exp Pharmacol, Ther Antibodies. 2008;181:183–219.

    Article  Google Scholar 

  144. Sikora K. Surrogate endpoints in cancer drug development. Drug Discov Today. 2002;7:951–56.

    Article  PubMed  Google Scholar 

  145. Wagner JA. Overview of biomarkers and surrogate endpoints in drug development. Dis Markers. 2002;18:41–46.

    PubMed  CAS  Google Scholar 

  146. Kim H, Likhari P, Lin CC, Nomeir AA. High-performance liquid chromatographic analysis of the anti-tumor agent SCH 66336 in cynomolgus monkey plasma and evaluation of its chiral inversion in animals. J Chromatogr B Biomed Sci Appl. 1999;728:133–41.

    Article  PubMed  CAS  Google Scholar 

  147. Albanell J, Rojo F, Baselga J. Pharmacodynamic studies with the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839. Semin Oncol. 2001;28(5 Suppl 16):56–66.

    Article  PubMed  CAS  Google Scholar 

  148. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.

    PubMed  CAS  Google Scholar 

  149. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumor activity. Nat Rev Cancer. 2008;8:579–91.

    Article  PubMed  CAS  Google Scholar 

  150. Cheung, AM, Brown, AS, Cucevic V, Roy M, Needles A, Yang V, Hicklin DJ, Kerbel RS, Foster FS. Detecting vascular changes in tumor xenografts using micro-ultrasound and micro-CT following treatment with VEGFR-2 blocking antibodies. Ultrasound Med Biol. 2007;33:1259–68.

    Article  PubMed  Google Scholar 

  151. Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170:793–804.

    Article  PubMed  CAS  Google Scholar 

  152. Dimasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22:151–85.

    Article  PubMed  Google Scholar 

  153. Von Hoff DD. There are no bad anticancer agents, only bad clinical trial designs. Clin Cancer Res. 1998;4:1079–86.

    PubMed  CAS  Google Scholar 

  154. Fidler IJ. The role of host factors and tumor heterogeneity in the testing of therapeutic agents. In: Fidler IJ, White RJ, editors. Design of models for testing cancer therapeutic agents. New York, NY: Van Nostrand Reinhold. 1982; p. 239–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, M., Hicklin, D. (2011). Human Tumor Xenograft Efficacy Models. In: Teicher, B. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-968-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-968-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-967-3

  • Online ISBN: 978-1-60761-968-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics