Skip to main content

Human Tumor Xenograft Models in NCI Drug Development

  • Chapter
Anticancer Drug Development Guide

Abstract

The preclinical discovery and development of anticancer drugs by the NCI consist of a series of test procedures, data review, and decision steps that have been summarized recently (1). Test procedures are designed to provide comparative quantitative data, which in turn, permit selection of the best candidate agents from a given chemical or biological class. Periodic, comprehensive reviews by various NCI committees serve not only to identify and expedite the development of active lead compounds that may provide more efficacious treatments for human malignancy, but also to eliminate agents that are inactive and/or highly toxic from further consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grever MR, Schepartz SA, Chabner BA. The National Cancer Institute: Cancer drug discovery and development program. Semin Oncol 1992; 19: 622–638.

    PubMed  CAS  Google Scholar 

  2. Zubrod CG, Schepartz S, Leiter J, Endicott KM, Carrese LM, Baker CG. The chemotherapy program of the National Cancer Institute: History, analysis and plans. Cancer Chemother Rep 1966; 50: 349–540.

    Google Scholar 

  3. Goldin A, Schepartz SA, Venditti JM, DeVita VT Jr. Historical development and current strategy of the National Cancer Institute Drug Development Program. In: DeVita VT Jr, Busch H, eds. Methods in Cancer Research, vol. XVI. New York: Academic. 1979: 165–245.

    Google Scholar 

  4. DeVita VT Jr, Goldin A, Oliverio VT, Rubin D, Muggia FM, Henney J, Wiernik PW, Schepartz S, Ziegler J. The drug development and clinical trials programs of the Division of Cancer Treatment, National Cancer Institute. Cancer Clin Trials 1979; 2: 195–216.

    Google Scholar 

  5. Goldin A, Venditti JM. The new NCI screen and its implications for clinical evaluation. In: Carter SK, Sakurai Y, eds. Recent Results in Cancer Research, vol. 70 Berlin, Heidelberg: Springer-Verlag. 1980: 5–20.

    Google Scholar 

  6. Venditti JM. Preclinical drug development: Rationale and methods. Semin Oncol 1981; 8: 349–361.

    PubMed  CAS  Google Scholar 

  7. Frei E. The national chemotherapy program. Science (Wash DC) 1982; 217: 600–606.

    Article  Google Scholar 

  8. Venditti JM. The National Cancer Institute antitumor drug discovery program current and future perspectives: A commentary. Cancer Treatment Rep 1983; 67: 767–772.

    CAS  Google Scholar 

  9. Driscoll J. The preclinical new drug research program of the National Cancer Institute. Cancer Treatment Rep 1984; 68: 63–76.

    CAS  Google Scholar 

  10. Goldin A. Screening at the National Cancer Institute: Basic concepts. In: Hellman K, Carter SK, eds. Fundamentals of Cancer Chemotherapy. New York: McGraw-Hill. 1987: 141–149.

    Google Scholar 

  11. Suffness M, Newman DJ, Snader K. Discovery and development of antineoplastic agents from natural sources. In: Scheuer P, ed. Bioorganic Marine Chemistry, vol. 3. Berlin: Springer- Verlag. 1989: 131–168.

    Chapter  Google Scholar 

  12. Boyd MR. Status of the NCI preclinical antitumor drug discovery screen. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology, Updates, vol. 3. Philadelphia: Lippincott. 1989: 1–12.

    Google Scholar 

  13. Gellhorn A, Hirschberg E. Investigation of diverse systems for cancer chemotherapy screening. Cancer Res 1955; 15 (suppl 3): 1–125.

    Google Scholar 

  14. Venditti JM, Wesley RA, Plowman J. Current NCI preclinical antitumor screening in vivo: Results of tumor panel screening, 1976-1982, and future directions. In: Garrattini S, Goldin A, Hawking F, eds. Advances in Pharmacology and Chemotherapy, vol 20. Orlando, FL: Academic. 1984: 1–20.

    Google Scholar 

  15. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumor to “nude” mice. Acta Pathol Microbiol Scand 1969; 77: 758–760.

    Article  PubMed  CAS  Google Scholar 

  16. Giovanella BC, Stehlin JS. Heterotransplantation of human malignant tumors in “nude” thy- musless mice. I. Breeding and maintenance of “nude” mice. J. Natl Cancer Inst 1973; 51: 615–619.

    PubMed  CAS  Google Scholar 

  17. Bogden A, Kelton D, Cobb W, Esber H. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In: Houchens D, Ovejera A, eds. Proceedings of the Symposium on the Use of Athymic (Nude) Mice in Cancer Research. New York, Stuttgart: Gustav Fischer. 1978: 231–250.

    Google Scholar 

  18. Fidler I J, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977; 197: 893–895.

    Article  PubMed  CAS  Google Scholar 

  19. Kozlowski JM, Fidler IJ, Campbell D, Xu Z, Kaighn ME, Hart IR. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984; 44: 3522–3529.

    PubMed  CAS  Google Scholar 

  20. Dykes DJ, Shoemaker RH, Harrison SD, Laster WR, Griswold DP, Mayo JG, Abbott BJ, Fine DL, Fodstad O, Boyd MR. Development and therapeutic response of a spontaneous metastasis model of a human melanoma (LOX) in athymic mice. Proc Am Assoc Cancer Res 1987; 28: 431.

    Google Scholar 

  21. Shoemaker RH, Dykes DJ, Plowman J, Harrison SD Jr, Griswold DP Jr, Abbott BJ, Mayo JG, Fodstad O, Boyd MR. Practical spontaneous metastasis model for in vivo therapeutic studies using a human melanoma. Cancer Res 1991; 51: 2837–2841.

    PubMed  CAS  Google Scholar 

  22. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer and Metastasis Rev 1986; 5: 29–49.

    Article  CAS  Google Scholar 

  23. Fidler I J, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer and Metastasis Rev 1994; 13: 209–222.

    Article  CAS  Google Scholar 

  24. McLemore TL, Liu MC, Blacker PC, Gregg M, Alley MC, Abbott BJ, Shoemaker RH, Bohlman ME, Litterst CC, Hubbard WC, Brennan RH, McMahon JB, Fine DL, Eggleston JC, Mayo JG, Boyd MR. A novel intrapulmonary model for the orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 1987; 47: 5132–5140.

    PubMed  CAS  Google Scholar 

  25. Leone A, Flatow U, VanHoutte K, Steeg PS. Transfection of human nm23-Hl into the human MDA-MB-435 breast carcinoma cell line: Effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 1993; 8: 2325–2333.

    PubMed  CAS  Google Scholar 

  26. Carter CA, Dykes DJ. Characterization of tumor growth and drug sensitivity for human prostate tumors implanted orthotopically. Proc Am Assoc Cancer Res 1994; 35: 280.

    Google Scholar 

  27. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science (Wash DC) 1977; 197: 461–463.

    Article  CAS  Google Scholar 

  28. Salmon SE, Hamburger AW, Soehnlen B, Durie BGM, Alberts DS, Moon TE. Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N Engl J Med 1978; 298: 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  29. Taetle R, Koessler AK, Howell SB. In vitro growth and drug sensitivity of tumor colony-forming units from human tumor xenografts. Cancer Res 1981; 41: 1856–1860.

    PubMed  CAS  Google Scholar 

  30. Salmon SE, Trent J, eds. Human Tumor Cloning. New York: Grune and Stratton, 1984.

    Google Scholar 

  31. Shoemaker RH, Wolpert-DeFilippes MK, Kern DH, Lieber MM, Makuch RW, Melnick NR, Miller WT, Salmon SE, Simon RM, Venditti JM, Von Hoff DD. Application of a human tumor colony forming assay to new drug screening. Cancer Res 1985; 45: 2145–2153.

    PubMed  CAS  Google Scholar 

  32. Dykes DJ, Abbott BJ, Mayo JG, Harrison SD Jr, Laster WR Jr, Simpson-Herren L, Griswold DP Jr. Development of human tumor xenograft models for in vivo evaluation of new antitumor drugs. In: Huber H, QueijSer W, eds. Contributions to Oncology, vol. 42. Basel: Karger. 1992: 1–12.

    Google Scholar 

  33. Geran RI, Greenberg NH, Macdonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep 1972; 3, Part 3: 51.

    Google Scholar 

  34. Stinson SF, Alley MC, Koop WC, Fiebig HH, Mullendore LA, Pittman AF, Kenney S, Keller J, Boyd MR. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res 1992; 12: 1035–1054.

    PubMed  CAS  Google Scholar 

  35. Boxma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    Article  Google Scholar 

  36. Fogh J, Fogh JM, Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 1977; 59: 221–225.

    PubMed  CAS  Google Scholar 

  37. Andriole GL, Mule JJ, Hansen DT, Linehan WM, Rosenberg SA. Evidence that lymphokine- activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice. J Immunol 1985; 135: 2911–2913.

    PubMed  CAS  Google Scholar 

  38. Shafle SM, Grantham FH. Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 1981; 67: 51–56.

    Google Scholar 

  39. Engel LW, Young NA, Tralka TS, Lippman ME, O#x2019;Brien SJ, Joyce MJ. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res 1978; 38: 3352–3364.

    PubMed  CAS  Google Scholar 

  40. Boyle MJ, Sewell WA, Milliken ST, Cooper DA, Penny R. HIV and malignancy. J Acquired Immune Defic Syndrome 1993; suppl l:S5–9.

    Google Scholar 

  41. Grever MR, Giavazzi R, Anver M, Hollingshead MG, Mayo JG, Malspeis L. An in vivo AIDS- related lymphoma model for assessing chemotherapeutic agents. Proc Am Assoc Cancer Res 1994; 35: 369.

    Google Scholar 

  42. Personal communication: Ian Magrath, Pediatrics Branch, Division of Cancer Treatment, NCI.

    Google Scholar 

  43. Magrath IT, Pizzo RA, Whang-Peng J, Douglass EC, Alabaster O, Gerber P, Freeman CB, Novikovs L. Characterization of lymphoma-derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. I. Physical cytogenetic, and growth characteristics. J Natl Cancer Inst 1980; 64: 465–476.

    PubMed  CAS  Google Scholar 

  44. Magrath IT, Freeman CB, Pizzo P, Gadek J, Jaffe E, Santaella M, Hammer C, Frank M, Reaman G, Novikovs L. Characterization of lymphoma-derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers. J. Natl Cancer Inst 1980; 64: 477–483.

    PubMed  CAS  Google Scholar 

  45. Magrath I, Freeman C, Santaella M, Gadek J, Frank M, Spiegel R, Novikovs L. Induction of complement receptor expression in cell lines derived from human undifferentiated lymphomas. II. Characterization of the induced complement receptors and demonstration of the simultaneous induction EBV receptor. J Immunol 1981; 127: 1039–1043.

    PubMed  CAS  Google Scholar 

  46. Benjamin D, Magrath IT, Maguire R, Janus C, Todd HD, Parson RG. Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt’s and non-Burkitt’s type. J Immunol 1982; 129: 1336–1342.

    PubMed  CAS  Google Scholar 

  47. Beckwith M, Urba WJ, Ferris DK, Freter CE, Kuhns DB, Moratz CM, Longo DL. Anti-IgM- mediated growth inhibition of a human B lymphoma cell line is independent of phosphatidy- linositol turnover and protein kinase C activation and involves tyrosine phosphorylation. J Immunol 1991; 147 (7): 2411–2418.

    PubMed  CAS  Google Scholar 

  48. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  PubMed  CAS  Google Scholar 

  49. Martin DS, Stolfi RL, Sawyer RC. Commentary on “clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy.” Cancer Treat Rep 1984; 68: 1317–1318.

    PubMed  CAS  Google Scholar 

  50. Martin DS, Balis ME, Fisher B, Frei E, Freireich EJ, Heppner G, Holland JF, Houghton JA, Houghton PJ, Johnson RK, Mittelman A, Rustum Y, Sawyer RC, Schmid FA, Stolfi RL, Young CW. Role of murine tumor models in cancer treatment research. Cancer Res 1986; 46: 2189–2192.

    PubMed  CAS  Google Scholar 

  51. Stolfi RL, Stolfi LM, Sawyer RC, Martin DS. Chemotherapeutic evaluation using clinical criteria in spontaneous, autochthonous murine breast tumors. J Natl Cancer Inst 1988; 80: 52–55.

    Article  PubMed  CAS  Google Scholar 

  52. Plowman J, Dykes DJ, Narayanan VL, Abbott BJ, Saito H, Hirata T, Grever MR. Efficacy of the quinocarmycins KW2152 and DX-52-1 against human melanoma lines growing in culture and in mice. Cancer Res 1995; 55: 862–867.

    PubMed  CAS  Google Scholar 

  53. Suffness M, Cordeil G. Antitumor alkaloids. In: Brossi A, ed. The Alkaloids, vol. XXV. New York: Academic. 1985: 1–355.

    Google Scholar 

  54. Rose WC. Taxol: a review of its preclinical in vivo antitumor activity. Anticancer Drugs 1992; 3: 311–321.

    Article  PubMed  CAS  Google Scholar 

  55. Plowman J, Dykes DJ, Waud WR, Harrison SD Jr., Griswold DP Jr. Response of murine tumors and human tumor xenografts to taxol (NSC 125973) in mice. Proc Am Assoc Cancer Res 1992; 33: 514.

    Google Scholar 

  56. Eiseman JL, Eddington N, Leslie J, MacAuley C, Sentz D, Kujawa J, Zuhowski M, Haidir S, Young D, Egorin MJ. Pharmacokinetics and development of a physiologic model of taxol in CD2F1 mice. Proc Am Assoc Cancer Res 1993; 34: 396.

    Google Scholar 

  57. Supko JG, Plowman J, Dykes DJ, Zaharko DS. Relationship between schedule dependence of 9-amino-20(S)-camptothecin (AC; NSC 603071) antitumor activity in mice and its plasma pharmacokinetics. Proc Am Assoc Cancer Res 1992; 33: 432.

    Google Scholar 

  58. Hollingshead M, Alley M, Abbott B, Mayo J, Grever M. Short-term in vivo cultivation of human tumor cell lines for assessing potential chemotherapeutic agents. Proc Am Assoc Cancer Res 1993; 34: 429.

    Google Scholar 

  59. Alley MC, Pacula-Cox CM, Hursey ML, Rubinstein LR, Boyd MR. Morphometric and colorimetric analyses of human tumor cell line growth and drug sensitivity in soft agar culture. Cancer Res 1991; 51: 1247–1256.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plowman, J., Dykes, D.J., Hollingshead, M., Simpson-Herren, L., Alley, M.C. (1997). Human Tumor Xenograft Models in NCI Drug Development. In: Teicher, B.A. (eds) Anticancer Drug Development Guide. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4615-8152-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8152-9_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4615-8154-3

  • Online ISBN: 978-1-4615-8152-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics