Skip to main content

Perspectives on the History and Evolution of Tumor Models

  • Chapter
  • First Online:
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Modern cancer therapeutic research is at crossroads in evolving our approaches to discovering, developing, and entering novel therapeutics into early-stage clinical trials. This chapter endeavors to summarize the customary use and interpretation of animal models used for prioritization of cancer treatments for entry into clinical trials through the end of the last century. We then consider the novel screening paradigms currently in use which exemplify the diverse types of challenging lead compounds for in vivo evaluation. Finally, we offer a strategic overview of steps to maximize utility of the animal model information in selecting agents for clinical study in the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  2. Liévre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  PubMed  Google Scholar 

  3. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther. 1997;73:147–71.

    Article  PubMed  CAS  Google Scholar 

  4. Bachmann KA, Ghosh R. The use of in vitro methods to predict in vivo pharmacokinetics and drug interactions. Curr Drug Metab. 2001;2:299–314.

    Article  PubMed  CAS  Google Scholar 

  5. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998;16:2659–71.

    PubMed  CAS  Google Scholar 

  6. Himmelweit F. ed. The collected papers of Paul Ehrlich, Vol. I. London: Pergamon; 1956. Originally published in 1900.

    Google Scholar 

  7. DeVita VT Jr, Carbone PP. Treatment of Hodgkin’s disease. Med Ann Dist Columbia. 1967;36:232.

    PubMed  Google Scholar 

  8. Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet. 1896;2:104–7.

    Article  Google Scholar 

  9. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787–93.

    Article  PubMed  CAS  Google Scholar 

  10. Hitchings GH, Elion GB, Falco EA, Russell PB, Vanderwerff H. Studies on analogs of purines and pyrimidines. Ann N Y Acad Sci. 1950;52:1318–35

    Article  PubMed  CAS  Google Scholar 

  11. Zubrod CG, Schepartz SA, Carter SK. Historical background of the National Cancer Institute’s drug development thrust. Natl Cancer Inst Monogr. 1977;45:7–11.

    PubMed  Google Scholar 

  12. Thambi P, Sausville EA. Working with the National Cancer Institute. In: Teicher BA, Andrews PA, editors. Anticancer drug development guide: preclinical screening, clinical trials, and approval. 2nd ed. 2004. Humana press, Totowa, NJ.

    Google Scholar 

  13. Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother Rep. 1964;35:1–111.

    PubMed  CAS  Google Scholar 

  14. Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents. XIV. Further study of certain basic concepts underlying chemotherapy of leukemia. Cancer Chemother Rep. 1965;45:5–28.

    PubMed  CAS  Google Scholar 

  15. Plowman J, Dykes DJ, Hollingshead MG, Simpson-Herren L, Alley MC. Human tumor xenograft models in NCI drug development. In Teicher BA, editor. Anticancer drug development guide: preclinical screening, clinical trials, and approval; 1997. Totowa, NJ: Humana. p. 101–25.

    Google Scholar 

  16. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.

    PubMed  CAS  Google Scholar 

  17. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst.1991;83:757–66

    Article  PubMed  CAS  Google Scholar 

  18. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:424–1431

    Google Scholar 

  19. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9:4227.

    PubMed  Google Scholar 

  20. Williams N. Genome projects: yeast genome sequence ferments new research. Science. 1996;272:481.

    Article  PubMed  CAS  Google Scholar 

  21. Dilda PJ, Don AS, Tanabe KM, Higgins VJ, Allen JD, Dawes IW, et al. Mechanism of selectivity of an angiogenesis inhibitor from screening a genome-wide set of Saccharomyces cerevisiae deletion strains. J Natl Cancer Inst. 2005;97:1539–47.

    Article  PubMed  CAS  Google Scholar 

  22. Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988;241:317–22.

    Article  PubMed  CAS  Google Scholar 

  23. http://dtp.cancer.gov/yacds/default.htmlaccessed 10/7/10.

  24. Jaklevic B, Uyetake L, Lemstra W. Chang J, Leary W, Edwards A, et al.Contribution of Growth and Cell Cycle Checkpoints to Radiation Survival in Drosophila. Genetics 2006;174:1963–72.

    Google Scholar 

  25. Tsen C, Iltis M, Kaur N, Bayer C, Delcros J-G, Laurence von Kalm L, et al. A Drosophila model to identify polyamine−Drug conjugates that target the polyamine Transporter in an Intact Epithelium. J Med Chem. 2008;51:324–30.

    Google Scholar 

  26. Youds JL, Barber LJ, Boulton SJ. C. elegans: a model of Fanconi anemia and ICL repair. Mutat Res. 2009;668:103–16.

    Article  PubMed  CAS  Google Scholar 

  27. Siddiqui SS, Loganathan S, Krishnaw S, Faoro L, Jagadeeswaran R, Salgia R. C. elegans as a model organism for in vivo screening in cancer: effects of human c-Met in lung cancer affect C. elegans vulva phenotypes. Cancer Biol Ther. 2008;7:856–63.

    Google Scholar 

  28. Krumschnabel G, Podrabsky JE. Fish as model systems for the study of vertebrate apoptosis. Apoptosis. 2009;14:1–21.

    Article  PubMed  Google Scholar 

  29. Hagedorn M, Jave4rzat S, Gilges D, de Lafarge B, Eichmann A, Bikfalvi A. Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA, 2005;102:1643–8.

    CAS  Google Scholar 

  30. Serbedzija GN, Flynn E, Willett CE. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis. 1999;3(4):353–9.

    Article  PubMed  CAS  Google Scholar 

  31. Kalin RE, Banziger-Tobler NE, Detmar M, Brandli AW. An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis. Blood. 2009;114:1110–22.

    Article  PubMed  CAS  Google Scholar 

  32. Beck CW, Slack JMW. An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol. 2001;2:reviews1029.1–reviews1029.5.

    Article  Google Scholar 

  33. Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol. 2003;31(Suppl):62–87.

    PubMed  CAS  Google Scholar 

  34. Inglese J. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA, 2006;103:11473–8.

    Article  PubMed  CAS  Google Scholar 

  35. Shoemaker RH, Scudiero DA, Melillo G, Currens MJ, Monks AP, Rabow AA, et al. Application of high-throughput, molecular-targeted screening to anticancer drug discovery. 2002;2:229–46.

    CAS  Google Scholar 

  36. Caron PR, Mullican MD, Mashal RD, Wilson KP, Su MS, Murcko MA. Chemogenomic approaches to drug discovery. Curr Opin Chem Biol. 2001;5:464–70.

    Article  PubMed  CAS  Google Scholar 

  37. Stockwell BR. Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet. 2000;1:116–25.

    Article  PubMed  CAS  Google Scholar 

  38. Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, Snyder M, Schreiber SL. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad sci USA. 2004;101:16594–9.

    Article  PubMed  CAS  Google Scholar 

  39. Giroux V, Iovanna J, Dagorn JC. Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J. 2006;20:1982–91.

    Article  PubMed  CAS  Google Scholar 

  40. Schwikowski B, Uetz P, Fields S. A network of protein–protein interactions in yeast. Nat Biotechnol. 2000;18:1257–61.

    Article  PubMed  CAS  Google Scholar 

  41. Gao X, Nie S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotech. 2003;21:371–3.

    Article  CAS  Google Scholar 

  42. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23:1418–23.

    Article  PubMed  CAS  Google Scholar 

  43. Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009;29:3867–75.

    PubMed  CAS  Google Scholar 

  44. Kuttenkeuler D, Boutros M. Genome-wide RNAi as a route to gene function in Drosophila. Brief Funct Genomics Proteomics. 2004;3:168–76.

    Article  CAS  Google Scholar 

  45. Woo HG, Park ES, Lee JS, Lee YH, Ishikawa T, Kim YJ, Thorgeirsson SS. Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res. 2009;69:4059–66.

    Article  PubMed  CAS  Google Scholar 

  46. Iorns E, Lord CJ, Ashworth A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem J. 2009;417:361–70.

    Article  PubMed  CAS  Google Scholar 

  47. Farmer H, McCabe, N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  PubMed  CAS  Google Scholar 

  48. Dunstan HM, Ludlow C, Goehle S, Cronk M, Szankasi P, Evans DR, et al. Cell-based assays for identification of novel double-strand break-inducing agents. J Natl Cancer Inst. 2002;94:88–94.

    Google Scholar 

  49. Geng L, Rachakonda G, Morré DJ, Morré DM, Crooks PA, Sonar VN, et al. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature. FASEB J. 2009;23:2986–95.

    Article  PubMed  CAS  Google Scholar 

  50. Bussolati B, Grange C, Tei L, Deregibus MC, Ercolani M, Aime S, et al. Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display. J Mol Mef. 2007;85:8970906.

    Google Scholar 

  51. Belvisi L, Riccioni T, Marcellini M, Vesci L, Chiarucci I, Efrati D, et al. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. 2005;4:1670–80.

    Google Scholar 

  52. Hodivala-Dilke K. alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol. 2008;20:514–9.

    Article  PubMed  CAS  Google Scholar 

  53. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. 1997; 23:3–25.

    CAS  Google Scholar 

  54. Raynaud FI, Fischer PM, Nutley BP, Goddard PM, Lane DP, Workman P. Cassette dosing pharmacokinetics of a library of 2,6,9-trisubstituted purine cyclin-dependent kinase 2 inhibitors prepared by parallel synthesis. Mol Cancer Ther. 2004;3:353–62.

    PubMed  CAS  Google Scholar 

  55. Hollingshead MG. Antitumor efficacy testing in rodents. J Natl Cancer Inst. 2008;100:1500–10.

    Article  PubMed  CAS  Google Scholar 

  56. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–22.

    PubMed  CAS  Google Scholar 

  57. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K, et al. Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res. 2006;12:7180–6.

    Article  PubMed  CAS  Google Scholar 

  58. Decker S, Hollingshead M, Bonomi CA, Carter JP, Sausville EA. The hollow fibre model in cancer drug screening: the NCI experience. Eur J Cancer. 2004;40:821–6.

    Article  PubMed  CAS  Google Scholar 

  59. Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008;7:2955–66.

    Article  PubMed  CAS  Google Scholar 

  60. Horstmann E, McCabe MS, Grochow L, Yamamoto S, Rubinstein L, Budd T, et al.. Risks and benefits of phase 1 oncology trials, 1991 through 2002. N Engl J Med. 2005;352:895–904.

    Article  PubMed  CAS  Google Scholar 

  61. Supko JG, Malspeis L. Pharmacokinetics of the 9-amino and 10,11-methylenedioxy derivatives of camptothecin in mice. Cancer Res. 1993;53:3062–9.

    PubMed  CAS  Google Scholar 

  62. Sparreboom A, Chen H, Acharya MR, Senderowicz AM, Messmann RA, Kuwabara T, et al. Effects of alpha1-acid glycoprotein on the clinical pharmacokinetics of 7-hydroxystaurosporine. Clin Cancer Res. 2004;10:6840–6.

    Article  PubMed  CAS  Google Scholar 

  63. Acharya MR, Sparreboom A, Sausville EA, Conley BA, Doroshow JH, Venitz J, et al. Interspecies differences in plasma protein binding of MS-275, a novel histone deacetylase inhibitor. Cancer Chemother Pharmacol. 2006;57:275–81.

    Article  PubMed  CAS  Google Scholar 

  64. Lin Y, Dubinsky WP, Ho DH, Felix E, Newman RA. Determinants of human and mouse melanoma cell sensitivities to oleandrin. J Exp Ther Oncol. 2008;7:195–205.

    PubMed  CAS  Google Scholar 

  65. Stayrook KR, McKinzie JH, Barbhaiya LH, Crowell PL. Effects of the antitumor agent perillyl alcohol on H-Ras vs. K-Ras farnesylation and signal transduction in pancreatic cells. Anticancer Res. 1998;18:823–8.

    Google Scholar 

  66. Volpe DA, Tomaszewski JE, Parchment RE, Garg A, Flora KP, Murphy MJ, et al. Myelotoxic effects of the bifunctional alkylating agent bizelesin on human, canine and murine myeloid progenitor cells. Cancer Chemother Pharmacol. 1996;39(1–2):143–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Sausville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Decker, S., Sausville, E. (2011). Perspectives on the History and Evolution of Tumor Models. In: Teicher, B. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-968-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-968-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-967-3

  • Online ISBN: 978-1-60761-968-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics