Skip to main content

Recombinant Antibody Fragment Production in the Antarctic Marine Bacterium Pseudoalteromonas haloplanktis TAC125

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Abstract

Within the biopharmaceutical industry, the antibody market is one of the fastest-growing segments, due to wide applications of recombinant antibodies and antibody fragments in research, diagnostics and therapy. Large-scale production of this protein class requires the use of a platform characterised by low costs, accessible for genetic modifications and easily scaled up. Although their production in prokaryotic hosts can significantly lower production costs, recombinant antibody production in conventional bacterial hosts, such as Escherichia coli, may result in formation of inclusion bodies. As protein solubility (and consequently its correct folding) may be enhanced by lowering of the expression temperature, a novel process for recombinant antibody fragment production at low temperatures was set up using Pseudoalteromonas haloplanktis TAC125 as recombinant expression host. To test the versatility of the new process developed in the Antarctic Gram-negative bacterium, three model proteins, corresponding to the most common formats of antibody fragments, were produced: Fab, scFv and VH. Several critical aspects were considered in the construction of an ad hoc genetic expression system for each model protein, including the selection of molecular signals for periplasmic protein translocation and the choice of an optimal gene-expression strategy. For instance, an artificial operon was designed and constructed for Fab fragment production in fully heterodimeric form. Furthermore, a novel defined minimal medium was made up to maximise bacterial growth parameters and recombinant production yields. All antibody fragments were produced in soluble and biologically competent form. The observed ability of the Antarctic bacterium to produce recombinant antibody fragments was justified by the observation that P. haloplanktis TAC125 genome contains an unusually high number of genes encoding peptidyl-prolyl cis-trans isomerases, making this bacterium the host of choice for the recombinant production of this protein class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbabi–Ghahroudi M, Tanha J, Mackenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24:501–519

    Article  PubMed  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S Jr, Tutino ML, Villaverde A (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31:140–53

    Article  CAS  PubMed  Google Scholar 

  • Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Chatzi KE, Sardis MF, Karamanou S, Economou A (2013) Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 449:25–37

    Article  CAS  PubMed  Google Scholar 

  • Coleman ME, Tamplin ML, Phillips JG, Marmer BS (2003) Influence of agitation, inoculum density, pH, and strain on the growth parameters of Escherichia coli O157:H7–relevance to risk assessment. Int J Food Microbiol 83:147–160

    Article  CAS  PubMed  Google Scholar 

  • Dalbey RE, Chen M (2004) Sec–translocase mediated membrane protein biogenesis. Biochim Biophys Acta 1694:37–53

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Frascotti G, Bernard–Granger L, Vazquez F, Giuliani M, Baumann K, Rodriguez–Carmona E, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttila M, Ferrer P, Tutino ML, Villaverde A, Porro D, Mattanovich D (2011) Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 27:38–46

    Article  CAS  PubMed  Google Scholar 

  • Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic Gram negative bacteria. Methods Mol Biol 267:225–237

    CAS  PubMed  Google Scholar 

  • Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14

    Article  CAS  PubMed  Google Scholar 

  • Feige MJ, Hendershot LM, Buchner J (2010) How antibodies fold. Trends Biochem Sci 35:189–198

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512840

    Google Scholar 

  • Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler U, Conrad U (1995) High–level production and long–term storage of engineered antibodies in transgenic tobacco seeds. Biotechnology 13:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Gasser B, Maurer M, Rautio J, Sauer M, Bhattacharyya A, Saloheimo M, Penttilä M, Mattanovich D (2007) Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BioMed Central Genomics 8:179

    PubMed  PubMed Central  Google Scholar 

  • Giuliani M, Parrilli E, Ferrer P, Baumann K, Marino G, Tutino ML (2011) Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem 46:953–959

    Article  CAS  Google Scholar 

  • Giuliani M, Parrilli E, Pezzella C, Rippa V, Duilio A, Marino G, Tutino ML (2012) A novel strategy for the construction of genomic mutants of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 824:219–33

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Parrilli E, Sannino F, Apuzzo GA, Marino G, Tutino ML (2014) Recombinant production of a single–chain antibody fragment in Pseudoalteromonas haloplanktisTAC125. Appl Microbiol Biotechnol 98:4887–4895

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Parrilli E, Sannino F, Apuzzo GA, Marino G, Tutino ML (2015) Soluble recombinant protein production in Pseudoaltermonas haloplanktis TAC125. Methods Mol Biol 1258:243–257

    Article  CAS  PubMed  Google Scholar 

  • Grudnik P, Bange G, Sinning I (2009) Protein targeting by the signal recognition particle. Biol Chem 390:775–782

    Article  CAS  PubMed  Google Scholar 

  • Hamers–Casterman C, Atarhouch T, Muyldermans S (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  PubMed  Google Scholar 

  • Hollinger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  CAS  Google Scholar 

  • Joosten V, Lokman C, Van Den Hondel C (2003) The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Factories 2:1

    Article  Google Scholar 

  • Kim CH, Axup JY, Lawson BR, Yun H, Tardif V, Choi SH, Zhou Q, Dubrovska A, Biroc SL, Marsden R, Pinstaff J, Smide VV, Schultz PG (2013) Bispecific small molecule-antibody conjugate targeting prostate cancer. Proc Natl Acad Sci U S A 110:17796–17801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochuparambil ST, Litzow MR (2014) Novel antibody therapy in acute lymphoblastic leukemia. Curr Hematol Malig Rep 9:165–173

    Article  PubMed  Google Scholar 

  • Kunert RE, Weik R, Ferko B, Stiegler G, Katinger H (2002) Anti–idiotypic antibody Ab2/3H6 mimics the epitope of the neutralizing anti–HIV–1 monoclonal antibody 2F5. AIDS 16:667–668

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Ahluwalia K, Bohmann DJ, Giang HM, Schwimmer LJ, Issafras H, Reddy NB, Chan C, Horwitz AH, Takeuchi T (2013) Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co–expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm. J Immunol Methods 394:10–21

    Article  CAS  PubMed  Google Scholar 

  • Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von HG, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monegal A, Ami D, Martinelli C (2009) Immunological applications of single–domain llama recombinant antibodies isolated from a naïve library. Protein Eng Des Sel 22:273–280

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S, Lauwereys M (1999) Unique single–domain antigen binding fragments derived from naturally occurring camel heavy–chain antibodies. J Mol Recognit 12:131–140

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim D, Yanofsky C (1980) Translational coupling during expression of the tryptophan operon in Escherichia coli. Genetics 95:785–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papa R, Rippa V, Sannia G, Marino G, Duilio A (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC 125. J Biotechnol 127:199–210

    Article  CAS  PubMed  Google Scholar 

  • Parrilli E, De Vizio D, Cirulli C, Tutino ML (2008) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrilli E, Giuliani M, Marino G, Tutino ML (2010) Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microb Cell Fact 9:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil G, Rudolph R, Lange C (2008) In vitro–refolding of a single–chain Fv fragment in the presence of heteroaromatic thiols. J Biotechnol 134:218–221

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132

    Article  CAS  PubMed  Google Scholar 

  • Somerville JE Jr, Goshorn SC, Fell HP, Darveau RP (1994) Bacterial aspects associated with the expression of a single–chain antibody fragment in Escherichia coli. Appl Microbiol Biotechnol 42:595–603

    Article  CAS  PubMed  Google Scholar 

  • Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Thie H, Schirrmann T, Paschke M, Dubel S, Hust M (2008) SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. Nat Biotechnol 25:49–54

    CAS  Google Scholar 

  • Tutino ML, Duilio A, Parrilli R, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  CAS  PubMed  Google Scholar 

  • Vallejo LF, Rinas U (2004) Strategy for recovery of active protein through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:2–12

    Article  CAS  Google Scholar 

  • Vigentini I, Merico A, Tutino ML, Compagno C, Marino G (2006) Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol 127:141–150

    Article  CAS  PubMed  Google Scholar 

  • Wicknerw W, Leonard MR (1996) Escherichia coli preprotein translocase. J Biol Chem 271:29514–29516

    Article  Google Scholar 

  • Wilmes B, Hartung A, Lalk M, Liebeke M, Schweder T, Neubauer P (2010) Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb Cell Fact 9:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang AS, Sharp KA, Honig B (1992) Analysis of the heat capacity dependence of protein folding. J Mol Biol 227:889–900

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Tutino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Parrilli, E. et al. (2016). Recombinant Antibody Fragment Production in the Antarctic Marine Bacterium Pseudoalteromonas haloplanktis TAC125. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_8

Download citation

Publish with us

Policies and ethics