Skip to main content

Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

Solubility/activity issues are often experienced when immunoglobulin fragments are produced in conventional microbial cell factories. Although several experimental approaches have been followed to solve, or at least minimize, the accumulation of the recombinant proteins into insoluble aggregates, sometimes the only alternative strategy is changing the protein production platform.

In this chapter we describe the use of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 as host of choice for the production of the heavy-chain antibody fragment VHHD6.1. Combining the use of a regulated psychrophilic gene expression system with an optimized fermentation process in defined growth medium, we obtained the recombinant VHHD6.1 in fully soluble form and correctly translocated into host periplasmic space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  2. Muyldermans S, Lauwereys M (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J Mol Recognit 12:131–140

    Article  CAS  PubMed  Google Scholar 

  3. Joosten V, Lokman C, van den Hondel C et al (2003) The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact 2:1

    Article  PubMed Central  PubMed  Google Scholar 

  4. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rippa V, Papa R, Giuliani M et al (2012) Regulated recombinant protein production in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 824:203–218

    Article  CAS  PubMed  Google Scholar 

  6. Giuliani M, Parrilli E, Pezzella C et al (2012) A novel strategy for the construction of genomic mutants of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol 824:219–233

    Article  CAS  PubMed  Google Scholar 

  7. Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic Gram negative bacteria. Methods Mol Biol 267:225–237

    CAS  PubMed  Google Scholar 

  8. Médigue C, Krin E, Pascal G et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  PubMed Central  PubMed  Google Scholar 

  9. Corchero JL, Gasser B, Resina D et al (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31:140–153

    Article  CAS  PubMed  Google Scholar 

  10. Gasser B, Saloheimo M, Rinas U et al (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vigentini I, Merico A, Tutino ML et al (2006) Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol 127:141–150

    Article  CAS  PubMed  Google Scholar 

  12. Giuliani M, Parrilli E, Ferrer P et al (2012) Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem 46:953–959

    Article  Google Scholar 

  13. Monegal A, Ami D, Martinelli C et al (2009) Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library. Protein Eng Des Sel 22:273–280

    Article  CAS  PubMed  Google Scholar 

  14. Birolo L, Tutino ML, Fontanella B et al (2000) Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem 267:2790–2802

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  16. Papa R, Rippa V, Sannia G et al (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127:199–210

    Article  CAS  PubMed  Google Scholar 

  17. Tutino ML, Parrilli E, Giaquinto L et al (2002) Secretion of α-amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. J Bacteriol 184:5814–5817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Blatny JM, Brautaset T, Winther-Larsen HC et al (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Tutino ML, Duilio A, Parrilli E et al (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  CAS  PubMed  Google Scholar 

  20. Madonna S, Papa R, Birolo L et al (2006) The thiol-disulphide oxidoreductase system in the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC 125: discovery of a novel disulfide oxidoreductase enzyme. Extremophiles 10:41–51

    Article  CAS  PubMed  Google Scholar 

  21. Schierle CF, Berkmen M, Huber D et al (2003) The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185:5706–5713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  23. Hollinger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Programma Nazionale di Ricerca in Antartide 2009 (Grant PNRA 2010/A1.05) to G.M. and M.L.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Tutino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Giuliani, M., Parrilli, E., Sannino, F., Apuzzo, G., Marino, G., Tutino, M.L. (2015). Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics