Skip to main content
Log in

Study of polyamide 12 crystallization behavior within rotational molding process

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Our study is focused on the investigation of polyamide 12 (PA 12) grade behavior in rotational molding process. Hence, some rotational molding tests of polyamide 12 were conducted on a STP LAB 40 machine. To simulate the cooling stage within the rotational molding, the crystallization behavior of polyamide 12 was studied using differential scanning calorimetry technique and the obtained results for non-isothermal crystallization were fitted with Ozawa model. Furthermore, morphology survey has been carried out by a hot stage method using a microscope to investigate the spherulites evolution which depends on the temperature. The micro-tensile properties have been studied using micro-tensile bench (MVTV2) to explain the mechanical behavior of polyamide 12 during crystallization. As a result, the rotational molding of PA 12 was successfully carried out. The simulation of the melting and crystallization stages, by application of Ozawa model coupled with enthalpy method gave a good representation of experimental data on one hand. On the other hand, all characterization revealed useful information to understand the different phenomena that govern the rotational molding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301

    Article  CAS  Google Scholar 

  2. Mohammadi S, Taremi FA, Rafizadeh M (2012) Crystallization conditions effect on molecular weight of solid-state polymerized poly(ethylene terephthalate). Iran Polym J 21:415–422

    Article  CAS  Google Scholar 

  3. Wang K, Chen F, Zhang Q, Fu Q (2008) Shish–kebab of polyolefin by “melt manipulation” strategy in injection-molding: a convenience pathway from fundament to application. Polymer 49:4745–4755

    Article  CAS  Google Scholar 

  4. Patel RM (2012) Crystallization kinetics modeling of high density and linear low density polyethylene resins. J Appl Polym Sci 124:1542–1552

    Article  CAS  Google Scholar 

  5. Xin W, Harkin-Jones EH, Crawford RJ, Fatnes AM (2000) Rotational moulding of metallocene polyethylenes. Plast Rubber Compos 29:340–348

    Google Scholar 

  6. Jiang Q, Jia H, Wang J, Fang E, Jiang J (2012) Effects of nucleating agents on crystallization behavior and mechanical properties of high-fluid polypropylene. Iran Polym J 21:201–209

    Article  CAS  Google Scholar 

  7. Razavi-Nouri M, Hay JN (2007) Isothermal crystallization kinetics and melting behaviour of metallocene-catalyzed polyethylenes. Iran Polym J 16:105–112

    CAS  Google Scholar 

  8. Min M, Zhang R, Lu A, Gao Y, Lu Z (2008) Crystallization of poly (phenylene sulphide) with different molecular weights under shear condition. Iran Polym J 17:199–207

    CAS  Google Scholar 

  9. Keller A, Kolnaar HWH (1997) Flow-induced orientation and structure formation. In: processing of polymers 4, Meijer HEH (ed). Mater Sci Technol 18:189–268

    CAS  Google Scholar 

  10. Bushman AC, McHugh AJ (1996) A continuum model for the dynamics of flow-induced crystallization. J polym Sci B Polym Phys 34:2393–2407

    Article  CAS  Google Scholar 

  11. Mackley MR, Frank FC, Keller A (1975) Flow-induced crystallization of polyethylene melts. J Mater Sci 10:1501–1509

    Article  CAS  Google Scholar 

  12. Van Puyvelde P, Langouche F, Baert J (2008) Flow-induced crystallization in poly-1-butene: the shish-kebab transition. Int J Mater Form 1:667–670

    Article  Google Scholar 

  13. Schulze GEW, Naujeck TR (1991) A growing 2d spherulite and calculus of variations. Part I: a 2D spherulite in a linear field of growth rate. Colloid Polym Sci 269:689–694

    Article  CAS  Google Scholar 

  14. Avrami M (1940) Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  15. Avrami M (1939) Kinetics of phase change. I: general theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  16. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  17. Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of nonisothermal crystallization of polymers. I: relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci 16:1077–1091

    Article  CAS  Google Scholar 

  18. Tcharkhtchi A, Barcelo P, Mazabraud P, Jousse F, Kearns MP (2002) Study of adhesion between two layers in multilayers rotomolded products. Adv Eng Mater 4:475–478

    Article  CAS  Google Scholar 

  19. Crawford RJ, Throne JL (2002) Rotational moulding technology. William Andrew Publishing, New York

    Google Scholar 

  20. Oliveira MJ, Cramez MC (2001) Rotational molding of polyolefins: processing, morphology, and properties. J Macromol Sci Phys 40:457–471

    Article  Google Scholar 

  21. Xu H, Bellehumeur CT (2008) Morphology development for single-site ethylene copolymers in rotational molding. J Appl Polym Sci 107:236–245

    Article  CAS  Google Scholar 

  22. Liu S-J, Tsai C-H (1999) An experimental study of foamed polyethylene in rotational molding. Polym Eng Sci 39:1776–1786

    Article  CAS  Google Scholar 

  23. Xu H, Bellehumeur CT (2006) Modeling the morphology development of ethylene copolymers in rotational molding. J Appl Polym Sci 102:5903–5917

    Article  CAS  Google Scholar 

  24. Sarrabi S, Colin X, Tcharkhtchi A (2010) Kinetic modeling of polypropylene thermal oxidation during its processing by rotational molding. J Appl Polym Sci 118:980–996

    CAS  Google Scholar 

  25. Crawford RJ (1996) Rotational moulding of plastics, 2nd edn. Research Studies Press, Taunton

    Google Scholar 

  26. Mounif E, Liang GG, Cook WD, Bellenger V, Tcharkhatchi A (2009) Poly(methyl methacrylate)-modified epoxy/amine system for reactive rotational moulding: crosslinking kinetics and rheological properties. Polym Int 58:954–961

    Article  CAS  Google Scholar 

  27. Tcharkhtchi A, Verdu J (2004) Structure–processibility relationships during rotational moulding of plastics. Adv Eng Mater 6:983–992

    Article  CAS  Google Scholar 

  28. Sun D-W, Crawford RJ (1993) Computer simulation of rotational molding heat transfer processes. Plast Rub Compos Pro 19:47–53

    CAS  Google Scholar 

  29. Olson LG, Crawford RJ, Kearns M, Geiger N (2000) Rotational molding of plastics: comparison of simulation and experimental results for an axisymmetric mold. Polym Eng Sci 40:1758–1764

    Article  CAS  Google Scholar 

  30. Gogos G, Olson LG, Liu X (1999) Cycle time predictions for the rotational molding process with and without mold/part separation. Polym Eng Sci 39:617–629

    Article  CAS  Google Scholar 

  31. Sun D-W, Crawford RJ (1993) Analysis of the effects of internal heating and cooling during the rotational molding of plastics. Polym Eng Sci 33:132–139

    Article  CAS  Google Scholar 

  32. Crawford RJ, Nugent P (1989) Computer simulation of the rotational moulding process for plastics. Plast Rub Proc Appl 11:107–124

    CAS  Google Scholar 

  33. Gogos G, Olson LG, Liu X, Pasham VR (1998) New models for rotational molding of plastics. Polym Eng Sci 38:1387–1398

    Article  CAS  Google Scholar 

  34. Tcharkhtchi A, Perrot E, Chinesta F (2004) Simulation of thermal phenomena on the interface molten polymer/powder polymer during rotational molding. Int Polym Proc 19:296–302

    CAS  Google Scholar 

  35. Zhou Y, Fernandez-Pello AC (2000) An enthalpy–temperature hybrid method for solving phase-change problems and its application to polymer pyrolysis and ignition. Combust Theor Model 4:477–493

    Article  CAS  Google Scholar 

  36. Sarrabi S, Colin X, Tcharkhtchi A (2009) Dégradation thermique du polypropylène au cours du rotomoulage. Partie I: simulation du transfert thermique (in French). Mater Tech 96:253–261

    Article  Google Scholar 

  37. Jose S, Thomas PS, Thomas S, Karger-Kocsis J (2006) Thermal and crystallization behaviours of blends of polyamide 12 with styrene–ethylene/butylenes–styrene rubbers. Polymer 47:6328–6336

    Article  CAS  Google Scholar 

  38. Lonkar SP, Morlat-Therias S, Caperaa N, Leroux F, Gardette JL, Singh RP (2009) Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer 50:1505–1515

    Article  CAS  Google Scholar 

  39. Duffo P, Monasse B, Haudin JM (1991) Cast film extrusion of polypropylene. Thermomechanical and physical aspects. J Polym Eng 10:151–230

    Article  CAS  Google Scholar 

  40. Jolly L, Tidu A, Heizmann JJ, Bolle B (2002) Microstructure evolutions in polyamide 11 under small uniaxial extension. Polymer 43:6839–6851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experimental assistances of Macromolecules Laboratory team of EMP [Bordj El Bahri (Algeria)] and PIMM (Paris, France) are gratefully acknowledged. The authors would like to thank these colleagues for valuable contributions and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tcharkhtchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafsaoui, S.L., Mahmoud, R., Farzaneh, S. et al. Study of polyamide 12 crystallization behavior within rotational molding process. Iran Polym J 22, 187–197 (2013). https://doi.org/10.1007/s13726-012-0118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0118-y

Keywords

Navigation