Skip to main content

Advertisement

Log in

Preheat Compression Molding for Polyetherketoneketone: Effect of Molecular Mobility

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyetherketoneketone (PEKK) is a new evolving polymeric material, and is considered as another important member of the polyaryletherketone (PAEK) family in addition to polyetheretherketone (PEEK). Hot compression molding can be used to compact and consolidate the PEKK products, where the temperature and pressure play key roles to affect the molecular mobility, entanglement and crystallization, and thus the mechanical properties of PEKKs. In this study, a preheating treatment was introduced in the compression molding, and it is found that such preheating is very essential to avoid the formation of crystal Form II, based on the increased chain entanglement. Molecular dynamics simulations revealed that the molecular mobility is always suppressed when a compression is applied. Therefore, by increasing the entanglement via the preheating and maintaining such entanglement in the consequent compression molding, strong and tough PEKK materials were obtained, with a negligible fraction of crystal Form II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Mezrakchi, R.; Creasy, T.; Sue, H. J.; Bremner, T. Manipulation of thick-walled PEEK bushing crystallinity and modulus via instrumented compression molding. J. Appl. Polym. Sci. 2021, 138, 49930.

    Article  CAS  Google Scholar 

  2. Alqurashi, H.; Khurshid, Z.; Syed, A. U. Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M. S. Polyetherketoneketone (PEKK): an emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021, 28, 87–95.

    Article  CAS  Google Scholar 

  3. Attwood, T. E.; Dawson, P. C.; Freeman, J. L.; Hoy, L. R. J.; Rose, J. B.; Staniland, P. A. Synthesis and properties of polyaryletherketones. Polymer 1981, 22, 1096–1103.

    Article  CAS  Google Scholar 

  4. Audoit, J.; Rivière, L.; Dandurand, J.; Lonjon, A.; Dantras, E.; Lacabanne, C. Thermal, mechanical and dielectric behaviour of poly(aryl ether ketone) with low melting temperature. J. Therm. Anal. Calorim. 2019, 135, 2147–2157.

    Article  CAS  Google Scholar 

  5. Benedetti, L.; Brulé, B.; Decraemer, N.; Davies, R.; Evans, K. E.; Ghita, O. A route to improving elongation of high-temperature laser sintered PEKK. Addit. Manuf. 2020, 36, 101540.

    CAS  Google Scholar 

  6. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.

    Article  CAS  Google Scholar 

  7. Blundell, D. J.; Osborn, B. N. The morphology of poly(aryl-ether-ether-ketone). Polymer 1983, 24, 953–958.

    Article  CAS  Google Scholar 

  8. Cebe, P.; Chung, S. Y.; Hong, S. D. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. J. Appl. Polym. Sci. 1987, 33, 487–503.

    Article  CAS  Google Scholar 

  9. Cheng, S. Z. D.; Ho, R. M.; Hsiao, B. S.; Gardner, K. H. Polymorphism and crystal structure identification in poly(aryl ether ketone ketone)s. Macromol. Chem. Phys. 1996, 197, 185–213.

    Article  CAS  Google Scholar 

  10. Choupin, T.; Debertrand, L.; Fayolle, B.; Régnier, G.; Paris, C.; Cinquin, J.; Brulé, B. Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers. Polym. Cryst. 2019, 2, e10086.

    CAS  Google Scholar 

  11. Conrad, T. L.; Jaekel, D. J.; Kurtz, S. M.; Roeder, R. K. Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds. J. Biomed. Mater. Res. Part B 2013, 101B, 576–583.

    Article  CAS  Google Scholar 

  12. Dar, U. A.; Xu, Y. J.; Zakir, S. M.; Saeed, M. U. The effect of injection molding process parameters on mechanical and fracture behavior of polycarbonate polymer. J. Appl. Polym. Sci. 2017, 134, 44474.

    Article  Google Scholar 

  13. Day, M.; Deslandes, Y.; Roovers, J.; Suprunchuk, T. Effect of molecular weight on the crystallization behaviour of poly(aryl ether ether ketone): a differential scanning calorimetry study. Polymer 1991, 32, 1258–1266.

    Article  CAS  Google Scholar 

  14. Gardner, K. H.; Hsiao, B. S.; Faron, K. L. Polymorphism in poly(aryl ether ketone)s. Polymer 1994, 35, 2290–2295.

    Article  CAS  Google Scholar 

  15. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447.

    Article  CAS  Google Scholar 

  16. Jiang, Z.; Chen, R.; Lu, Y.; Whiteside, B.; Coates, P.; Wu, Z.; Men, Y. Crystallization temperature dependence of cavitation and plastic flow in the tensile deformation of poly(ε-caprolactone). J. Phys. Chem. B 2017, 121, 6673–6684.

    Article  CAS  Google Scholar 

  17. Jones, D. P.; Leach, D. C.; Moore, D. R. Mechanical properties of poly(ether-ether-ketone) for engineering applications. Polymer 1985, 26(9), 1385–1393.

    Article  CAS  Google Scholar 

  18. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.

    Article  CAS  Google Scholar 

  19. Kumar, D.; Rajmohan, T.; Venkatachalapathi, S. Wear behavior of PEEK matrix composites: a review. Mater. Today: Proc. 2018, 5, 14583–14589.

    CAS  Google Scholar 

  20. Kurtz, S. M.; N. Devine, J. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869.

    Article  CAS  Google Scholar 

  21. Lee, Y.; Porter, R. S. Effects of thermal history on crystallization of poly(ether ether ketone) (PEEK). Mccromolcuulss 1888, 21, 2770–2776.

    Article  Google Scholar 

  22. Li, C.; Strachan, A. Prediction of PEKK properties related to crystallization by molecular dynamics simulations with a unitedatom model. Polymer 2019, 174, 25–32.

    Article  CAS  Google Scholar 

  23. Lustiger, A.; Uralil, F. S.; Newaz, G. M. Processing and structural optimization of PEEK composites. Polym. Compos. 1990, 11, 65–75.

    Article  CAS  Google Scholar 

  24. Men, Y. Critical strains determine the tensile deformation mechanism in semicrystalline polymers. Macromolecules 2020, 53, 9155–9157.

    Article  CAS  Google Scholar 

  25. Mullins, M. J.; Woo, E. P. The synthesis and properties of poly(aromatic ketones). J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1987, C27, 313–341.

    Article  CAS  Google Scholar 

  26. Mylläri, V.; Ruoko, T. P.; Vuorinen, J.; Lemmetyinen, H. Characterization of thermally aged polyetheretherketone fibres—mechanical, thermal, rheological and chemical property changes. Polym. Degrad. Stab. 2015, 120, 419–426.

    Article  Google Scholar 

  27. Roland, S.; Moghaddam, M.; Tencé-Girault, S.; Fayolle, B. Evolution of mechanical properties of aged poly(ether ketone ketone) explained by a microstructural approach. Polym. Degrad. Stab. 2021, 183, 109412.

    Article  CAS  Google Scholar 

  28. Rudolph, N. M.; Osswald, T. A.; Ehrenstein, G. W. Influence of pressure on volume, temperature and crystallization of thermoplastics during polymer processing. Int. Polym. Proc. 2011, 26, 239–248.

    Article  CAS  Google Scholar 

  29. Sarasua, J. R.; Remiro, P. M.; Pouyet, J. Effects of thermal history on mechanical behavior of PEEK and its short-fiber composites. Polym. Compos. 1996, 17, 468–477.

    Article  CAS  Google Scholar 

  30. Seguela, R. Critical review of the molecular topology of semicrystalline polymers: the origin and assessment of intercrystalline tie molecules and chain entanglements. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 1729–1748.

    Article  CAS  Google Scholar 

  31. Shukla, D.; Negi, Y. S.; Uppadhyaya, J. S.; Kumar, V. Synthesis and modification of poly(ether ether ketone) and their properties: a review. Polym. Rev. 2012, 52, 189–228.

    Article  CAS  Google Scholar 

  32. van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.

    Article  CAS  Google Scholar 

  33. Tencé-Girault, S.; Quibel, J.; Cherri, A.; Roland, S.; Fayolle, B.; Bizet, S.; Iliopoulos, I. Quantitative structural study of cold-crystallized PEKK. ACS Appl. Polym. Mater. 2021, 3, 1795–1808.

    Article  Google Scholar 

  34. Veazey, D.; Hsu, T.; Gomez, E. D. Next generation high-performance carbon fiber thermoplastic composites based on polyaryletherketones. J. Appl. Polym. Sci. 2017, 134, 44441.

    Article  Google Scholar 

  35. Wang, P.; Yu, H.; Ma, R.; Wang, Y.; Liu, C.; Shen, C. Temperature-dependent orientation of poly(ether ether ketone) under uniaxial tensile and its correlation with mechanical properties. J. Therm. Anal. Calorim. 2020, 141, 1361–1369.

    Article  CAS  Google Scholar 

  36. Wang, Q.; Xue, Q.; Liu, H.; Shen, W.; Xu, J. The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK. Wear 1996, 198, 216–219.

    Article  CAS  Google Scholar 

  37. Xie, J.; Wang, S.; Cui, Z.; Wu, J. Process optimization for compression molding of carbon fiber-reinforced thermosetting polymer. Materials 2019, 12, 2430.

    Article  CAS  Google Scholar 

  38. Xu, Q.; Shang, Y.; Jiang, Z.; Wang, Z.; Zhou, C.; Liu, X.; Yan, Q.; Li, X.; Zhang, H. Effect of molecular weight on mechanical properties and microstructure of 3D printed poly(ether ether ketone). Polym. Int. 2021, 70, 1065–1072.

    Article  CAS  Google Scholar 

  39. Zhang, X. Carbon nanotube/polyetheretherketone nanocomposites: mechanical, thermal, and electrical properties. J. Compos. Mater. 2021, 55, 2115–2132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2232021G-01) and the National Natural Science Foundation of China (No. 51862036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XH., Jiao, MX., Wang, X. et al. Preheat Compression Molding for Polyetherketoneketone: Effect of Molecular Mobility. Chin J Polym Sci 40, 175–184 (2022). https://doi.org/10.1007/s10118-021-2649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2649-1

Keywords

Navigation