Skip to main content
Log in

Optical properties of one-dimensional soft photonic crystals with ferrofluids

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We review the recent theoretical study on the optical properties of one-dimensional soft photonic crystals (1D SPCs) with ferrofluids. The proposed structure is composed of alternating ferrofluid layers and dielectric layers. For the ferrofluid, single domain ferromagnetic nanoparticles can align to a chain under the stimuli of an external magnetic field, thus changing the microstructure of the system. Meanwhile, nonlinear optical responses in ferrofluids are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Masaya, Rep. Prog. Phys., 2010, 73: 096501

    Article  Google Scholar 

  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton: Princeton University Press, 2008

    MATH  Google Scholar 

  3. E. Yablonovitch, Phys. Rev. Lett., 1987, 58(20): 2059

    Article  ADS  Google Scholar 

  4. S. John, Phys. Rev. Lett., 1987, 58(23): 2486

    Article  ADS  Google Scholar 

  5. Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, J. Mater. Chem., 2011, 21(37): 14113

    Article  Google Scholar 

  6. Q. Y. Zhu, Y. Q. Fu, D. Q. Hu, and Z. M. Zhang, Chin. Phys. B, 2012, 21(6): 064220

    Article  ADS  Google Scholar 

  7. J. Wang, M. Yan, and M. Qiu, Front. Phys. China, 2010, 3(3): 260

    Article  ADS  Google Scholar 

  8. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express, 2005, 13(3): 801

    Article  ADS  Google Scholar 

  9. M. Loncčar, T. Doll, J. Vučković, and A. Scherer, J. Lightwave Tech., 2000, 18: 1402

    Article  ADS  Google Scholar 

  10. T. Zijlstra, E. van der Drifta, M. J. A. de Dood, E. Snoeks, and A. Polman, J. Vac. Sci. Technol. B, 1999, 17(6): 2734

    Article  Google Scholar 

  11. S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, NPG Asia Mater., 2011, 3(1): 25

    Article  Google Scholar 

  12. P. Jiang, J. M. Smith, J. M. Ballato, and S. H. Foulger, Adv. Mater., 2005, 17(2): 179

    Article  Google Scholar 

  13. Y. J. Zhao, Z. Y. Xie, H. C. Gu, L. Jin, X. W. Zhao, B. P. Wang, and Z. Z. Gu, NPG Asia Mater., 2012, 4(9): e25

    Article  Google Scholar 

  14. M. Honda, T. Seki, and Y. Takeoka, Adv. Mater., 2009, 21(18): 1801

    Article  Google Scholar 

  15. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. J. Russell, F. G. Omenetto, and A. J. Taylor, Opt. Express, 2002, 10: 1520

    Article  ADS  Google Scholar 

  16. J. D. Debord, S. Eustis, S. B. Debord, M. T. Lofye, and L. A. Lyon, Adv. Mater., 2002, 14(9): 658

    Article  Google Scholar 

  17. R. E. Rosensweig, Ferrohydrodynamics, New York: Cambridge University Press, 1985

    Google Scholar 

  18. Y. H. Ye, T. S. Mayer, I. C. Khoo, I. B. Divliansky, N. Abrams, and T. E. Mallouk, J. Mater. Chem., 2002, 12(12): 3637

    Article  Google Scholar 

  19. L. He, Y. X. Hu, X. G. Han, Y. Lu, Z. D. Lu, and Y. D. Yin, Langmuir, 2011, 27(22): 13444

    Article  Google Scholar 

  20. W. Cheng, K. B. Tang, and J. Sheng, Chem. -Eur. J., 2010, 16(12): 3608

    Article  Google Scholar 

  21. X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater., 2002, 14(3): 1249

    Article  Google Scholar 

  22. X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater., 2001, 13(22): 1681

    Article  Google Scholar 

  23. N. Yanase, H. Noguchi, H. Asakura, and T. Suzuta, J. Appl. Polym. Sci., 1993, 50(5): 765

    Article  Google Scholar 

  24. Y. X. Hu, L. He, and Y. D. Yin, Angew. Chem. Int. Ed., 2011, 50(16): 3747

    Article  Google Scholar 

  25. J. P. Ge, Y. X. Hu, and Y. D. Yin, Angew. Chem., 2007, 119(39): 7572

    Article  Google Scholar 

  26. L. He, Y. X. Hu, H. Kim, J. P. Ge, S. Kwon, and Y. D. Yin, Nano Lett., 2010, 10(11): 4708

    Article  ADS  Google Scholar 

  27. P. C. Morais, V. K. Garg, A. C. Oliveira, L. P. Silva, R. B. Azevedo, A. M. L. Silva, and E. C. D. Lima, J. Magn. Magn. Mater., 2001, 225(1–2): 37

    Article  ADS  Google Scholar 

  28. A.F. Bakuzis, K. SkeffNeto, P. P. Gravina, L. C. Figueiredo, P. C. Morais, L. P. Silva, R. B. Azevedo, and O. Silva, Appl. Phys. Lett., 2004, 84(13): 2355

    Article  ADS  Google Scholar 

  29. T. A. Eloim, P. C. Santos, Morais, and A. F. Bakuzis, Phys. Rev. E, 2010, 82: 21407

    Article  ADS  Google Scholar 

  30. C. Scherer and A. M. Figueiredo Neto, Braz. J. Phys., 2005, 35(3a): 718

    Article  ADS  Google Scholar 

  31. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, Phys. Rev. Lett., 2010, 104(3): 034501

    Article  ADS  Google Scholar 

  32. X. D. Zhang, Front. Phys. China, 2006, 1(4): 396

    Article  ADS  Google Scholar 

  33. B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, Magnetic Fluids: Engeering Applications, New York: Oxford University Press, 1993

    Google Scholar 

  34. C. Alexiou, W. Arnold, P. Hulin, R. J. Klein, H. Renz, and F. G. Parak, Magnetohydrodynamics, 2001, 37: 318

    ADS  Google Scholar 

  35. I. Robinson, D. Tung, S. Maenosono, C. Wälti, and N. T. K. Thanh, Nanoscale, 2010, 2(12): 2624

    Article  ADS  Google Scholar 

  36. H. Rahn, I. Gomez-Morilla, R. Jurgons, Ch. Alexiou, and S. Odenbach, J. Phys.: Condens. Matter, 2008, 20(20): 204152

    Article  ADS  Google Scholar 

  37. J. D. A. Gomes, M. H. Sousa, F. A. Tourinho, R. Aquino, G. J. da Silva, J. Depeyrot, E. Dubois, and R. Perzynski, J. Phys. Chem. C, 2008, 112(16): 6220

    Article  Google Scholar 

  38. C. Z. Fan, G. Wang, and J. P. Huang, J. Appl. Phys., 2008, 103(9): 094107

    Article  ADS  Google Scholar 

  39. C. Z. Fan, E. J. Liang, and J. P. Huang, J. Phys. D, 2011, 44(32): 325003

    Article  Google Scholar 

  40. C. Z. Fan, J. Q. Wang, J. N. He, P. Ding, and E. J. Liang, Chin. Phys. B, 2012 (accepted)

    Google Scholar 

  41. C. Z. Fan and J. P. Huang, Appl. Phys. Lett., 2006, 89(14): 141906

    Article  ADS  Google Scholar 

  42. Y. Gao, C. Z. Fan, and J. P. Huang, Progress in Physics, 2010, 30: 387

    Google Scholar 

  43. D. M. Topasna and G. A. Topasna, Numerical modeling of thin film optical filters, in Education, Training in Optics, 2009, Photonics, OSA Technical Digest Series (CD) Optical Society of America, paper EP5

    Google Scholar 

  44. J. D. Jackson, Classical electrodynamics, Berkeley: University of California, 2004

    Google Scholar 

  45. C. C. Katsidis and D. I. Siapkas, Appl. Opt., 2002, 41(19): 3978

    Article  ADS  Google Scholar 

  46. X. Y. Wu, B. J. Zhang, J. H. Yang, X. J. Liu, N. Ba, Y. H. Wu, and Q. C. Wang, Physica E, 2011, 43(9): 1694

    Article  ADS  Google Scholar 

  47. C. K. Lo and K. W. Yu, Phys. Rev. E, 2001, 64(3 Pt 1): 031501

    Article  ADS  Google Scholar 

  48. K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, J. Phys.: Condens. Matter, 2003, 15(15): S1451

    Article  ADS  Google Scholar 

  49. K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, Nat. Mater., 2003, 2(2): 88

    Article  ADS  Google Scholar 

  50. R. A. Trasca and S. H. L. Klapp, J. Chem. Phys., 2008, 129(8): 084702

    Article  ADS  Google Scholar 

  51. M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. Dullens, and A. P. Philipse, Phys. Rev. Lett., 2006, 97(18): 185702

    Article  ADS  Google Scholar 

  52. M. Klokkenburg, B. H. Erné, A. Wiedenmann, A. V. Petukhov, and A. P. Philipse, Phys. Rev. E, 2007, 75(5 Pt 1): 051408

    Article  ADS  Google Scholar 

  53. Z. W. Wang, C. Holm, and H. W. Müller, Phys. Rev. E, 2002, 66(2 Pt 1): 021405

    Article  ADS  Google Scholar 

  54. J. T. K. Wan, G. Q. Gu, and K. W. Yu, Phys. Rev. E, 2001, 63(5 Pt 1): 052501

    Article  ADS  Google Scholar 

  55. J. P. Huang and K. W. Yu, Phys. Rep., 2006, 431(3): 87

    Article  ADS  Google Scholar 

  56. C. Cotae, O. Baltag, R. Olaru, D. Calarasu, and D. Costandache, J. Magn. Magn. Mater., 1999, 201(1–3): 394

    Article  ADS  Google Scholar 

  57. C. P. Pang, C. T. Hsieh, and J. T. Lue, J. Phys. D, 2003, 36(15): 1764

    Article  ADS  Google Scholar 

  58. J. P. Huang, Z. W. Wang, and C. Holm, Phys. Rev. E, 2005, 71(6 Pt 1): 061203

    Article  ADS  Google Scholar 

  59. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, Phys. Rev. E, 1999, 60(4 Pt B): 4891

    Article  ADS  Google Scholar 

  60. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, R. Viswanathan, J. W. Haus, and C. M. Bowden, Phys. Rev. A, 1997, 56(4): 3166

    Article  ADS  Google Scholar 

  61. J. P. Ge and Y. D. Yin, Angew. Chem. Int. Ed., 2011, 50(7): 1492

    Article  Google Scholar 

  62. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett., 1996, 77(18): 3787

    Article  ADS  Google Scholar 

  63. T. R. Zhai, D. H. Liu, and X. D. Xiang, Front. Phys. China, 2010, 5(3): 266

    Article  ADS  Google Scholar 

  64. K. Chang, J. T. Liu, J. B. Xia, and N. Dai, Appl. Phys. Lett., 2007, 91(18): 181906

    Article  ADS  Google Scholar 

  65. G. J. Lee, Y. P. Lee, S. G. Jung, C. K. Hwangbo, S. Kim, and I. Park, J. Appl. Phys., 2007, 102(7): 073528

    Article  ADS  Google Scholar 

  66. G. Wang, J. P. Huang, and K. W. Yu, Appl. Phys. Lett., 2007, 91(19): 191117

    Article  ADS  Google Scholar 

  67. M. Golosovsky, Y. Neve-Oz, and D. Davidovm, Synth. Met., 2003, 139(3): 705

    Article  Google Scholar 

  68. J. P. Ge, Y. X. Hu, and Y. D. Yin, Angew. Chem. Int. Ed., 2007, 46(39): 7428

    Article  Google Scholar 

  69. S. Kim and V. Gapalan, Appl. Phys. Lett., 2001, 78(20): 3015

    Article  ADS  Google Scholar 

  70. J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, Science, 1996, 274(5289): 959

    Article  ADS  Google Scholar 

  71. D. McPhail, M. Straub, and M. Gu, Appl. Phys. Lett., 2005, 87(9): 091117

    Article  ADS  Google Scholar 

  72. K. Busch and S. John, Phys. Rev. Lett., 1999, 83(5): 967

    Article  ADS  Google Scholar 

  73. E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, Appl. Phys. Lett., 2006, 89(18): 181108

    Article  ADS  Google Scholar 

  74. P. Kopperschmidt, Appl. Phys. B, 2001, 73(7): 717

    Article  ADS  Google Scholar 

  75. D. McPhail, M. Straub, and M. Gu, Appl. Phys. Lett., 2005, 86(5): 051103

    Article  ADS  Google Scholar 

  76. C. K. Lo and K. W. Yu, Phys. Rev. E, 2001, 64(3 Pt 1): 031501

    Article  ADS  Google Scholar 

  77. C. K. Lo, J. T. K. Wan, and K. W. Yu, J. Phys.: Condens. Matter, 2001, 13(6): 1315

    Article  ADS  Google Scholar 

  78. J. P. Huang, J. T. K. Wan, C. K. Lo, and K. W. Yu, Phys. Rev. E, 2001, 64(6 Pt 1): 061505

    Article  ADS  Google Scholar 

  79. P. B. Johnson and R. W. Christy, Phys. Rev. B, 1974, 9(12): 5056

    Article  ADS  Google Scholar 

  80. J. Zi, J. Wan and C. Zhang, Appl. Phys. Lett., 1998, 73(15): 2084

    Article  ADS  Google Scholar 

  81. R. R. Kellner and W. Koehler, J. Appl. Phys., 2005, 97(3): 034910

    Article  ADS  Google Scholar 

  82. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature, 1997, 386(6621): 143

    Article  ADS  Google Scholar 

  83. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature, 2001, 414(6861): 289

    Article  ADS  Google Scholar 

  84. M. Fu, J. Zhou, and J. H. Yu, J. Phys. Chem. C, 2010, 114(20): 9216

    Article  Google Scholar 

  85. S. G. Johnson and J. D. Joannopoulos, Opt. Express, 2001, 8(3): 173

    Article  ADS  Google Scholar 

  86. P. Yeh, Optical Waves in Layered Media, New York: Wiley, 1988

    Google Scholar 

  87. M. Lonca, D. Nedeljkovie, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett., 2000, 77: 1937

    Article  ADS  Google Scholar 

  88. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature, 2000, 404(6773): 53

    Article  ADS  Google Scholar 

  89. C. C. Cheng and A. Scherer, J. Vac. Sci. Technol. B, 1995, 13(6): 2696

    Article  ADS  Google Scholar 

  90. M. Miyake, Y. C. Chen, P. V. Braun, and P. Wiltzius, Adv. Mater., 2009, 21(29): 3012

    Article  Google Scholar 

  91. S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, J. Appl. Phys., 2003, 93(11): 9401

    Article  ADS  Google Scholar 

  92. G. Wang, J. P. Huang, and K. W. Yu, Opt. Lett., 2008, 33(19): 2200

    Article  ADS  Google Scholar 

  93. J. D. Debord and L. A. Lyon, J. Phys. Chem. B, 2000, 104(27): 6327

    Article  Google Scholar 

  94. W. Park and J. B. Lee, Appl. Phys. Lett., 2004, 85(21): 4845

    Article  ADS  Google Scholar 

  95. X. C. Xu, Y. G. Xi, D. Z. Han, X. H. Liu, J. Zi, and Z. Q. Zhu, Appl. Phys. Lett., 2005, 86(9): 091112

    Article  ADS  Google Scholar 

  96. D. Soto-Puebla, M. Xiao, and F. Ramos-Mendieta, Phys. Lett. A, 2004, 326(3–4): 273

    Article  ADS  MATH  Google Scholar 

  97. M. Bergmair and K. Hingerl, J. Opt. A, 2007, 9(9): S339

    Article  Google Scholar 

  98. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, Nano, 2009, 3: 1379

    Google Scholar 

  99. S. P. Yeap, P. Y. Toh, A. L. Ahmad, S. C. Low, S. A. Majetich, and J. K. Lim, J. Phys. Chem. C, 2012, 116(42): 22561

    Article  Google Scholar 

  100. Y. Song, J. Ding, and Y. H. Wang, J. Phys. Chem. C, 2012, 116(20): 11343

    Article  Google Scholar 

  101. Z. C. Xu, Y. L. Hou, and S. H. Sun, J. Am. Chem. Soc., 2007, 129(28): 8698

    Article  Google Scholar 

  102. Z. Ban and C. O’Connor, Mat. Res. Soc. Symp. Proc., 2004, 818: M5.18

    Article  Google Scholar 

  103. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, Nano Lett., 2005, 5(2): 379

    Article  ADS  Google Scholar 

  104. V. Kuzmiak and A. A. Maradudin, Phys. Rev. B, 1997, 55(12): 7427

    Article  ADS  Google Scholar 

  105. P. G. Kik, S. A. Maier, and H. A. Atwater, Phys. Rev. B, 2004, 69(4): 045418

    Article  ADS  Google Scholar 

  106. R. W. Boyd, Nonlinear Optics, New York: Academic Press, 1992

    Google Scholar 

  107. D. J. Bergman and D. Stroud, Solid State Phys., 1992, 46: 147

    Article  Google Scholar 

  108. M. Shimomuraa and T. Sawadaishib, Curr. Opin. Colloid Interface Sci., 2001, 6: 11

    Article  Google Scholar 

  109. C. Ren, L. F. Cheng, F. Kang, L. Gan, D. Z. Zhang, and Z. Y. Li, Chin. Phys. B, 2012, 21(10): 104210

    Article  ADS  Google Scholar 

  110. Y. Wang, X. Q. Huang, and C. D. Gong, Chin. Phys. Lett., 2000, 17: 498

    Article  ADS  Google Scholar 

  111. F. Zhuang, L. Wu, and S. L. He, Chinese Phys., 2002, 11(8): 834

    Article  ADS  Google Scholar 

  112. L. Li, Y. C. Xie, Y. Q. Wang, X. Y. Hu, Z. F. Feng, and B. Y. Cheng, Chin. Phys. Lett., 2003, 20: 1767

    Article  ADS  Google Scholar 

  113. V. L. Colvin, MRS Bull., 2001, 26(08): 637

    Article  Google Scholar 

  114. S. Colodrero, M. Ocaña, and H. Míguez, Langmuir, 2008, 24(9): 4430

    Article  Google Scholar 

  115. S. Colodrero, M. Ocaña, A. R. González-Elipe, and H. Míguez, Langmuir, 2008, 24(16): 9135

    Article  Google Scholar 

  116. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, J. Phys. Chem. C, 2010, 114(8): 3681

    Article  Google Scholar 

  117. B. G. Prevo and O. D. Velev, Langmuir, 2004, 20(6): 2099

    Article  Google Scholar 

  118. H. Jiang, J. Sabarinathan, T. Manifar, and S. Mittler, J. Lightwave. Tech., 2009, 27: 2264

    Article  ADS  Google Scholar 

  119. J. Li and Y. Han, Langmuir, 2006, 22(4): 1885

    Article  Google Scholar 

  120. S. Suresh, Science, 2001, 292(5526): 2447

    Article  ADS  Google Scholar 

  121. Q. Su, B. Liu and J. P. Huang, Front. Phys., 2011, 6(1): 65

    Article  Google Scholar 

  122. A. B. Shvartsburg, V. Kuzmiak, and G. Petite, Phys. Rep., 2007, 452(2–3): 33

    Article  ADS  Google Scholar 

  123. H. Rauh, G. I. Yampolskaya, and S. V. Yampolskii, New J. Phys., 2010, 12(7): 073033

    Article  ADS  Google Scholar 

  124. Z. F. Sang and Z. Y. Li, Opt. Commun., 2007, 273(1): 162

    Article  MathSciNet  ADS  Google Scholar 

  125. L. Shiveshwari and P. Mahto, Solid State Commun., 2006, 138(3): 160

    Article  ADS  Google Scholar 

  126. X. K. Kong, S. B. Liu, H. F. Zhang, and H. L. Guan, Opt. Commun., 2011, 284(12): 2915

    Article  ADS  Google Scholar 

  127. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, Phys. Rev. Lett., 1999, 83(20): 4045

    Article  ADS  Google Scholar 

  128. N. Yang, W. E. Angerer, and A. G. Yodh, Phys. Rev. Lett., 2001, 87(10): 103902

    Article  ADS  Google Scholar 

  129. B. Y. Gu and L. M. Zhao, Front. Phys. China, 2007, 2(3): 279

    Article  ADS  Google Scholar 

  130. J. P. Huang, Front. Phys. China, 2007, 2(1): 17

    Article  ADS  Google Scholar 

  131. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, Phys. Rev. Lett., 2004, 93(13): 133904

    Article  ADS  Google Scholar 

  132. R. Bernal and J. A. Maytorena, Phys. Rev. B, 2004, 70(12): 125420

    Article  ADS  Google Scholar 

  133. Y. Liu, F. Qin, F. Zhou, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, Front. Phys. China, 2010, 5(3): 220

    Article  ADS  Google Scholar 

  134. D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, Nature, 2004, 428(6980): 299

    Article  ADS  Google Scholar 

  135. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, Nano Lett., 2004, 4(12): 2355

    Article  ADS  Google Scholar 

  136. V. F. Puntes, P. Gorostiza, D. M. Aruguete, N. G. Bastus, and A. P. Alivisatos, Nat. Mater., 2004, 3(4): 263

    Article  ADS  Google Scholar 

  137. S. Odenbach, Magnetoviscous Effects in Ferrofluids, Berlin: Springer-Verlag, 2002

    MATH  Google Scholar 

  138. S. Odenbach and H. Gilly, J. Magn. Magn. Mater., 1996, 152(1-2): 123

    Article  ADS  Google Scholar 

  139. S. Odenbach and H. Störk, J. Magn. Magn. Mater., 1998, 183(1-2): 188

    Article  ADS  Google Scholar 

  140. P. M. Hui, C. Xu, and D. Stroud, Phys. Rev. B, 2004, 69(1): 014203

    Article  ADS  Google Scholar 

  141. J. P. Huang and K. W. Yu, Appl. Phys. Lett., 2004, 85(1): 94

    Article  ADS  Google Scholar 

  142. J. P. Huang and K. W. Yu, Appl. Phys. Lett., 2005, 86(4): 041905

    Article  ADS  Google Scholar 

  143. J. P. Huang, Phys. Rev. E, 2004, 70(4 Pt 1): 041403

    Article  ADS  MATH  Google Scholar 

  144. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science, 2004, 305(5685): 788

    Article  ADS  Google Scholar 

  145. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., New York: Pergamon, 1984

    Google Scholar 

  146. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, Phys. Rev. Lett., 2004, 92(5): 057402

    Article  ADS  Google Scholar 

  147. H. P. Chiang, P. T. Leung, and W. S. Tse, J. Phys. Chem. B, 2000, 104(10): 2348

    Article  Google Scholar 

  148. T. Du and W. Luo, Appl. Phys. Lett., 1998, 72(3): 272

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Zhen Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, CZ., Liang, EJ. & Huang, JP. Optical properties of one-dimensional soft photonic crystals with ferrofluids. Front. Phys. 8, 1–19 (2013). https://doi.org/10.1007/s11467-013-0280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0280-5

Keywords

Navigation