Skip to main content
Log in

Theory of enhanced second-harmonic generation in some artificial materials

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

We review the recent theoretical investigation on enhanced second-harmonic generation (SHG) in soft nonlinear optical materials based on ferrofluids, graded metallic films, and graded metal-dielectric films of anisotropic particles. The SHG of soft ferrofluid-based nonlinear optical materials possess magnetic-field controllabilities, i.e., magnetic-field-controllable anisotropy, red-shift and enhancement, which are caused to appear by the shift of a resonant plasmon frequency due to the formation of the chains of the coated nanoparticles. Both graded metallic films and graded metal-dielectric films of anisotropic particles can serve as a novel optical material for producing a broad structure in both the linear and SHG response and an enhancement in the SHG signal, due to the local field effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang J. P. and Yu K. W., Physics Reports, 2006, 431:87

    Article  ADS  Google Scholar 

  2. Huang J. P. and Yu K. W., New Nonlinear Optical Materials: Theoretical Research, Nova Science Publishers, Inc., New York, 2007, to be published

    Google Scholar 

  3. Fan C. Z. and Huang J. P., Appl. Phys. Lett., 2006, 89: 141906

    Google Scholar 

  4. Huang J. P. and Yu K. W., Appl. Phys. Lett., 2005, 86: 041905

    Google Scholar 

  5. Huang J. P. and Yu K. W., Appl. Phys. Lett., 2004, 85: 94.

    Article  ADS  Google Scholar 

  6. Huang J. P. and Yu K. W., Opt. Lett., 2005, 30: 275

    Article  ADS  MathSciNet  Google Scholar 

  7. Huang J. P., Hui P. M., and Yu K. W., Phys. Lett. A 2005, 342: 484

    Article  MATH  ADS  Google Scholar 

  8. Dadap J. I., Shan J., Eisenthal K. B., and Heinz T. F., Phys. Rev. Lett., 1999, 83: 4045

    Article  ADS  Google Scholar 

  9. Yang N., Angerer W. E., and Yodh A. G., Phys. Rev. Lett., 2001, 87: 103902

    Google Scholar 

  10. Xu P., et al., Phys. Rev. Lett., 2004, 93: 133904

  11. Bernal R. and Maytorena J. A., Phys. Rev. B, 2004, 70: 125420

    Google Scholar 

  12. Gao L. and K. W. Yu, Phys. Rev. B, 2005, 72: 075111

    Google Scholar 

  13. Mitzi D. B., Kosbar L. L., Murray C. E., Copel M., and Afzali A., Nature (London), 2004, 428: 299

    Article  ADS  Google Scholar 

  14. Nehl C. L., et al., Nano Lett., 2004, 4: 2355

    Article  Google Scholar 

  15. Puntes V. F., Gorostiza P., Aruguete D. M., Bastus N. G., and Alivisatos A. P., Nat. Mater., 2004, 3: 263

    Article  ADS  Google Scholar 

  16. Odenbach S., Magnetoviscous Effects in Ferrofluids, Springer, Berlin, 2002

    MATH  Google Scholar 

  17. Boyd R. W., Nonlinear Optics, Academic Press, New York, 1992

    Google Scholar 

  18. Hui P. M., Xu C., and Stroud D., Phys. Rev. B, 2004, 69: 014203

    Google Scholar 

  19. Smith D. R., Pendry J. B., and M. Wiltshire C. K., Science, 2004, 305: 788

    Article  ADS  Google Scholar 

  20. Bergman D. J. and Stroud D., Solid State Physics: Applied in Research and Applications, volume 46, page 147, Academic Press, New York, 1992

    Google Scholar 

  21. Landau L. D., Lifshitz E. M., and Pitaevskii L. P., Electrodynamics of Continuous Media, Pergamon Press, New York, 2 Ed., 1984

    Google Scholar 

  22. Stockman M. I. Bergman D. J., Anceau C., Brasselet S., and Zyss J., Phys. Rev. Lett., 2004, 92: 057402

    Google Scholar 

  23. Chiang H.-P., Leung P. T., and Tse W. S., J. Phys. Chem. B, 2000, 104: 2348

    Article  Google Scholar 

  24. Kik P. G., Maier S. A. and Atwater H. A., Phys. Rev. B, 2004, 69: 045418

    Google Scholar 

  25. Du T. and Luo W., Appl. Phys. Lett., 1998, 72: 272

    Article  ADS  Google Scholar 

  26. Shalaev V. M., Phys. Rep., 1996, 272: 61

    Article  ADS  Google Scholar 

  27. Fischer G. L., et al., Phys. Rev. Lett., 1995, 74: 1871

    Article  ADS  Google Scholar 

  28. Hui P. M. and Stroud D., J. Appl. Phys., 1997, 82: 4740

    Article  ADS  Google Scholar 

  29. Hui P. M., Xu C., and Stroud D., Phys. Rev. B, 2004, 69: 014202

    Google Scholar 

  30. Grull H., Schreyer A., Berk N. F., Majkrzak C. F., and Han C. C., Europhys. Lett., 2000, 50: 107

    Article  ADS  Google Scholar 

  31. Milton G. W., The Theory of Composites, Cambridge University Press, Cambridge, England, 2002

    MATH  Google Scholar 

  32. Lu, S. G., et al., Appl. Phys. Lett., 2003, 82: 2877

    Article  ADS  Google Scholar 

  33. Pezzetta D., et al., J. Opt. Soc. Am. B, 2002. 19: 2102

    ADS  Google Scholar 

  34. Purvinis G., et al., Opt. Lett., 2004, 29: 1108

    Article  ADS  Google Scholar 

  35. Pettinger B., Bao X., Wilcock I. C., Muhler M., and Ertl G., Phys. Rev. Lett., 1994, 72: 1561

    Article  ADS  Google Scholar 

  36. Neeves A. E. and Birnboim M. H., J. Opt. Soc. Am. B, 1989, 6: 787

    Article  ADS  Google Scholar 

  37. Sekikawa T., Kosuge A., Kanai T., and Watanabe S., Nature (London), 2004, 432: 605

    Article  ADS  Google Scholar 

  38. Rodenberger D. C., Heflin J. R., and Garito A. F., Nature (London), 1992, 359: 309

    Article  ADS  Google Scholar 

  39. Butcher P. N. and Cotter D., The Elements of Nonlinear Optics, Cambridge University Press, New York, 1990

    Google Scholar 

  40. Yuen K. P. and Yu K. W., J. Opt. Soc. Am. B, 1997, 14: 1387

    ADS  Google Scholar 

  41. Sahimi M., Heterogeneous Materials I, Springer-Verlag, New York, 2003

    MATH  Google Scholar 

  42. Sahimi M., Heterogeneous Materials II, Springer-Verlag, New York, 2003

    MATH  Google Scholar 

  43. Sipe J. E. and Boyd R. W., Phys. Rev. A, 1992, 46: 1614

    Article  ADS  Google Scholar 

  44. Gu G. Q., Hui P. M., and Yu K. W., Physica B, 2000, 279: 62

    Article  ADS  Google Scholar 

  45. Wei E. B., Song J. B., and Gu G. Q., J. Appl. Phys., 2004, 95: 1377

    Article  ADS  Google Scholar 

  46. Wei E. B., Yang Z. D., and Gu G. Q., J. Phys. D: Appl. Phys., 2004, 37: 107

    Article  ADS  Google Scholar 

  47. Huang J. P., J. Phys. Chem. B, 2005, 109: 4824

    Article  Google Scholar 

  48. Huang J. P., Frontal Polymer Research, Nova science publishers, Inc., New York, 2006: 131–170

    Google Scholar 

  49. Jones T. B., Electromechanics of Particles, Cambridge University Press, Cambridge, England, 1995

    Google Scholar 

  50. Dong L., Gu G. Q., and Yu K. W., Phys. Rev. B, 2003, 67: 224205

    Google Scholar 

  51. Gu G. Q. and Yu K. W., J. Appl. Phys., 2003, 94: 3376

    Article  ADS  Google Scholar 

  52. Hui P., Zhang X., and Stroud D., J. Mater. Sci., 1999, 34: 5497

    Article  Google Scholar 

  53. Wei E., Poon Y., and Shin F., Phys. Lett. A, 2005, 336: 264

    Article  ADS  Google Scholar 

  54. Sang Z. F. and Li Z. Y., Phys. Lett. A, 2005, 334: 422

    Article  ADS  MATH  Google Scholar 

  55. SÄonnichsen C. et al., Phys. Rev. Lett., 2002, 88: 077402

    Google Scholar 

  56. Yuen K. P., Law M. F., Yu K. W., and Sheng P., Phys. Rev. E, 1997, 56: R1322

    Article  ADS  Google Scholar 

  57. Zande B. M. I. V. D., Pages L., Hikmet R. A. M., and Blaaderen A. V., J. Phys. Chem. B, 1999, 103: 5761

    Article  Google Scholar 

  58. Snoeks E., et al., Adv. Mater., 2000, 12: 1511

    Article  Google Scholar 

  59. Benyagoub A., et al., Nucl. Instr. Methods Phys. Res. B, 1992, 64: 684

    Article  ADS  Google Scholar 

  60. Roorda S., et al., Adv. Mater., 2004, 16: 235

    Article  Google Scholar 

  61. Bohren C. F. and Huffman D. R., Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983

    Google Scholar 

  62. Jackson J. D., Classical Electrodynamics, Wiley, New York, 1975

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Ji-ping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Jp. Theory of enhanced second-harmonic generation in some artificial materials. Front. Phys. China 2, 17–30 (2007). https://doi.org/10.1007/s11467-007-0002-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-007-0002-y

Keywords

PACS numbers

Navigation