Skip to main content
Log in

Second harmonic generations in aperiodic optical superlattices with finite width and in one-dimensional defective photonic crystals made of nonlinear optical materials

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

The characteristics of the second harmonic generations (SHGs) in homogeneous and inhomogeneous systems are investigated. We consider two kinds of structures: one is aperiodic optical superlattices (AOSs) with homogeneous linear susceptibility and the modulated second-order nonlinear susceptibility; the second is linear and nonlinear susceptibilities both the system with inhomogeneous. We derive a general solution of SHG for the AOS with finite lateral width and of SHG in considering the depletion of the pump light power. We carry out the design of AOSs by using simulation annealing (SA) algorithm and show that the constructed AOSs can implement multiple wavelength SHGs with identical effective nonlinear coefficient at the preassigned wavelengths of incident light. We observe great enhancement of SHGs in the one-dimensional photonic crystals (PCs) with defects consisting of multiple photonic quantum wells made of nonlinear material when the frequency of fundamental wave aims at one of the defect states. We also propose an effective design approach of aperiodically stacked layers of nonlinear material and air in terms of the SA method. The constructed structure can achieve multiple-wavelength SHGs at the preas-signed wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yariv A. and Yeh P., Optical Wave in Crystal, New York: Wiley, 1984: 504

    Google Scholar 

  2. Shen Y. R., The Principles of Nonlinear Optics, New York: Wiley, 1984

    Google Scholar 

  3. Armstrong A, Bloembergen N., Ducuing J., and Pershan P.S., Phys. Rev., 1962, 127: 1918

    Article  ADS  Google Scholar 

  4. Zhu S. N., Zhu Y. Y., and Ming N. B., Science, 1997, 278: 843

    Article  ADS  Google Scholar 

  5. Zhu S. N., Zhu Y. Y., Qin Y. Q., Wang H. F., Ge C. Z., and Ming N. B., Phys. Rev. Lett., 1997, 78: 2752

    Article  ADS  Google Scholar 

  6. Zhu S. N., Zhu Y. Y., Zhang Z. Y., Shu H., Wang H. F., Hong J. F., Ge C. Z., and Ming N. B., J. Appl. Phys., 1995, 77: 5481

    Article  ADS  Google Scholar 

  7. Meyn J. P. and Fejer M. M., Opt. Lett., 1997, 22: 1214

    ADS  Google Scholar 

  8. Miller G. D., Batchko R. G., Tulloch W. M., Weise D. R., Fejer M. M., and Ber R. L., Opt. Lett., 1997, 22: 1834

    ADS  Google Scholar 

  9. Feng D., Ming N. B., Hong J. H., Yang Y. S., Zhu J. S., Yang Z., and Wang Y. N., Appl. Phys. Lett., 1980, 37: 607

    Article  ADS  Google Scholar 

  10. Xue Y. H., Ming N. B., Zhu J. S., and Feng D., Acta Phys. Sin., 1983, 32: 1515

    Google Scholar 

  11. Xue Y. H., Ming N. B., Zhu J. S., and Feng D., Chin. Phys. 1984, 4: 554

    Google Scholar 

  12. Thompson D. E., McMullen J. D., and Anderson D. B., Appl. Phys. Lett., 1973, 29: 113

    Article  ADS  Google Scholar 

  13. Deway C. E. and Hocker L. O., Appl. Phys. Lett., 1975, 26: 442

    Article  ADS  Google Scholar 

  14. Gu B. Y., Dong B. Z., Zhang Y. and Yang G. Z., Appl. Phys. Lett., 1999, 75: 2175

    Article  ADS  Google Scholar 

  15. Gu B. Y., Zhang Y. and Dong B. Z., J. Appl. Phys., 2000, 87: 7629

    Article  ADS  Google Scholar 

  16. Lee Y. W., Fan F. C., Huang Y. C., Gu B. Y., Dong B. Z., and Chou M. H., Opt. Lett., 2002, 27: 2191

    Article  ADS  Google Scholar 

  17. Dumeige Y., Vidakovic P., Sauvage S., Sagenes I., Levenson J. A., Sibilia C., Centini M., Aguanno G. D., and Scalora M., Appl. Phys. Lett., 2001, 78: 3021

    Article  ADS  Google Scholar 

  18. Scalora M., Bloemer M. J., Manka A. S., Dowling J. P., Bowden C. M., Viswanathan R., and Haus J. W., Phys. Rev. A. 1997, 56: 3166

    Article  ADS  Google Scholar 

  19. Centini M., Sibilia C., Scalora M., DAguanno G., Bertolotti M., Bloemer M. J., Bowden C. M., and Nefedov I., Phys. Rev. E, 1999, 60: 4891

    Article  ADS  Google Scholar 

  20. Ren F. F., Li R., Cheng C., Wang H. T., Qiu J., Si J., and Hirao K., Phys. Rev. B, 2004, 70: 245109

    Google Scholar 

  21. Li Z. Y., Gu B. Y., and Yang G. Z., Phys. Rev. B, 1998, 60: 10644

    Google Scholar 

  22. Zhao L. M., Gu B. Y., Zhou Y. S., and Wang F. H., J. Phys.: Condens. Matter, 2003, 15: 4889

    Article  ADS  Google Scholar 

  23. Kirkpatrick S., Gelatt C. D., and Vecchi M. P., Science, 1983, 220: 671

    Article  ADS  Google Scholar 

  24. Kirkpatrick S., J. Stat., Phys., 1983, 34: 975

    Article  Google Scholar 

  25. Zhao L. M., Gu B. Y., Yang G. Z., and Zhou Y. S., J. Non. Opt. Phys. Mater., 2005, 14: 115

    Article  Google Scholar 

  26. Zhao L. M. and Gu B. Y., Appl. Phys. Lett., 2006, 88: 122904

    Google Scholar 

  27. Zhao L. M. and Gu B. Y., Opt. Lett., 2006, 31: 1510

    Article  ADS  Google Scholar 

  28. Dmitriev V. G., Gurazdyan G. G., and Nikogosyan D. N., Handbook of Nonlinear Optical Crystals, Berlin: springer, 1997, Chapt. 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Ben-yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, By., Zhao, Lm. Second harmonic generations in aperiodic optical superlattices with finite width and in one-dimensional defective photonic crystals made of nonlinear optical materials. Front. Phys. China 2, 279–288 (2007). https://doi.org/10.1007/s11467-007-0044-l

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-007-0044-l

Keywords

PACS numbers

Navigation