Skip to main content
Log in

Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In the present study, we have cloned a gene encoding JcMT2a protein from Jatropha curcas L., a promising biofuel tree species. Full length sequence of JcMT2a gene was isolated using RACE PCR. Heterologous expression of JcMT2a in Escherichia coli and its purification has shown distinct bands corresponding to the GST and GST-fused JcMT2a protein. Significant tolerance was observed in E. coli cells expressing recombinant GST-JcMT2a for zinc, copper and cadmium metals compared to cells expressing GST alone. JcMT2a also restored Cu and Cd tolerance in the metal sensitive yeast mutants. Quantitative real time PCR showed a significant increase in JcMT2a transcripts with Cu and Cd in the leaf compared to root tissue. Our Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis clearly demonstrates that J. curcas L. could be a potential candidate for phytoremediation to clean heavy metals from the environment, in addition to its non-edible oil seed yields for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MT:

Metallothionein

RACE:

Rapid amplification of cDNA ends

UTR:

Untranslated region

GST:

Glutathione S-transferase

SEM–EDAX:

Scanning electron microscopy and energy dispersive X-ray spectroscopy

References

  1. Cobbett CS, Goldsbrough PB (2000) Mechanisms of metal resistance: metallothioneins and phytochelatins. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 247–269

    Google Scholar 

  2. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  3. Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214

    Article  Google Scholar 

  4. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  5. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  6. Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381

    Article  CAS  Google Scholar 

  7. Domènech J, Mir G, Huguet G, Capdevila M, Molinas M et al (2006) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88:583–593

    Article  PubMed  Google Scholar 

  8. Domenech J, Orihuela R, Mir G, Molinas M, Atrian S et al (2007) The Cd(II)-binding abilities of recombinant Quercus suber metallothionein, QsMT: bridging the gap between phytochelatins and metallothioneins. J Biol Inorg Chem 12:867–882

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  CAS  PubMed  Google Scholar 

  10. Ferraz P, Fidalgo F, Almeida A, Teixeira J (2012) Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved? Plant Physiol Biochem 57:254–260

    Article  CAS  PubMed  Google Scholar 

  11. Palacios O, Atrian S, Capdevila M (2011) Zn- and Cu-thioneins: A functional classification for metallothioneins? J Biol Inorg Chem 16:991–1009

    Article  CAS  PubMed  Google Scholar 

  12. Domenech J, Tinti A, Torreggiani A (2007) Biopolymer research trends. In: Nemeth TS (ed) Research progress on metallothioneins: insights into structure, metal binding properties and molecular function by spectroscopic investigations. Nova Science Publishers, Inc., New York, pp 11–48

    Google Scholar 

  13. Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. J Biochem 295:1–10

    CAS  Google Scholar 

  15. Freisinger E (2008) Plant MTs—long neglected members of the metallothionein superfamily. Dalton Trans 47:6663–6675

    Article  PubMed  Google Scholar 

  16. Freisinger E (2009) Metallothionein in plants. Met Ions Life Sci 5:107–153

    Article  CAS  Google Scholar 

  17. Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16:1035–1045

    Article  CAS  PubMed  Google Scholar 

  18. Zhou J, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328

    Article  CAS  PubMed  Google Scholar 

  19. Zhou G, Xu Y, Li J, Yang L, Liu JY (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39(5):595–606

    Article  CAS  PubMed  Google Scholar 

  20. Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS et al (2003) The isolation and characterization of type1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant Festuca rubra cv. Merlin. Plant Sci 164:51–60

    Article  CAS  Google Scholar 

  21. Yang Z, Wu YR, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  CAS  PubMed  Google Scholar 

  22. Mir G, Domènech J, Huguet G, Guo WJ, Goldsbrough P et al (2004) A plant type 2 MT from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    Article  CAS  PubMed  Google Scholar 

  23. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A et al (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582

    Article  PubMed  Google Scholar 

  24. Cozza R, Bruno L, Bitonti MB (2012) Expression pattern of a type-2 metallothionein gene in a wild population of the psammophyte Silene nicaeensis. Protoplasma. doi:10.1007/s00709-012-0425-3

    PubMed  Google Scholar 

  25. Zhang FQ, Wang YS, Sun CC, Lou ZP, Dong JD (2012) A novel metallothionein gene from a mangrove plant Kandelia candel. Ecotoxicology 21(6):1633–1641

    Article  CAS  PubMed  Google Scholar 

  26. Domenech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2005) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88:583–593

    Article  PubMed  Google Scholar 

  27. Domenech J, Tinti A, Capdevila M, Atrian S, Torreggiani A (2007) Structural study of the zinc and cadmium complexes of a type 2 plant (Quercus suber) metallothionein: insights by vibrational spectroscopy. Biopolymers 86(3):240–248

    Article  CAS  PubMed  Google Scholar 

  28. Wan X, Freisinger E (2009) The plant metallothionein 2 from Cicer arietinum forms a single metal-thiolate cluster. Metallomics 1:489–500

    Article  CAS  PubMed  Google Scholar 

  29. Jordan RH, Turley RB, Defauw SL, Steele M (2005) Characterization of cDNA encoding metallothionein 3 from cotton (Gossypium hirsutum L.). DNA Seq 16(2):96–102

    Article  CAS  PubMed  Google Scholar 

  30. Freisinger E (2006) Spectroscopic characterization of a fruit-specific metallothionein: M. acuminata MT3. Inorgan Chim Acta 360(1):369–380

    Article  Google Scholar 

  31. Rodríguez-Llorente ID, Pérez-Palacios P, Doukkali B, Caviedes MA, Pajuelo E (2010) Expression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance. Plant Sci 178:327–332

    Article  Google Scholar 

  32. Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, downregulated by cytokinin suggests functions in root development and seed embryo germination of rice. J Plant Physiol 146:1637–1650

    CAS  Google Scholar 

  33. Lee J, Shim D, Song WY, Hwang I, Lee Y (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815

    Article  CAS  PubMed  Google Scholar 

  34. Kumar G, Kushwaha HR, Sabharwal VP et al (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hassinen V, Vallinkoski VM, Issakainen S, Tervahauta A, Karenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula × tremloides) grown in contaminated soil. Environ Poll 157:922–930

    Article  CAS  Google Scholar 

  36. Hassinen VH, Tuomainen T, Peraniemi S, Karenlampi SO, Tervahauta AI (2009) Metallothionein 2 and 3 contribute to the metal adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlapsi caerulescens. J Exp Bot 60(1):187–196

    Article  CAS  PubMed  Google Scholar 

  37. Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins-metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  38. Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78

    Article  CAS  PubMed  Google Scholar 

  39. Zhu W, Zhao DX, Miao Q, Xue TT, Li XZ, Zheng C (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52:585–592

    Article  CAS  Google Scholar 

  40. Yang J, Wang Y, Liu G, Yang C, Li C (2011) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+ and NaCl in transgenic yeast. Mol Biol Rep 38(3):1567–1574

    Article  CAS  PubMed  Google Scholar 

  41. Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Raja KKG et al (2010) Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol 10:23

    Article  PubMed Central  PubMed  Google Scholar 

  42. Yadav SK, Juwarkar AA, Phani KG, Thawale PR, Singh SK et al (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and bio fertilizer. Bioresour Technol 100(20):4616–4622

    Article  CAS  PubMed  Google Scholar 

  43. Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54(3):117–122

    CAS  Google Scholar 

  44. Yan R, Gao S, Yang W, Cao M, Wang S et al (2008) Nickel toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. cotyledons. Plant Soil Environ 54:294–300

    CAS  Google Scholar 

  45. Mangkoedihardjo S, Surahmaida A (2008) Jatropha curcas L. for phytoremediation of lead and cadmium polluted soil. World Appl Sci J 4(4):519–522

    Google Scholar 

  46. Agamutu P, Abioye OP, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894

    Article  Google Scholar 

  47. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Sacchraromyces cerevisiae. J Biol Chem 271:12275–12280

    Article  CAS  PubMed  Google Scholar 

  49. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  50. Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    CAS  PubMed  Google Scholar 

  51. Hamer DH, Thiele DJ, Lemontt JE (1985) Function and auto regulation of yeast copperthionein. Science 228:685–690

    Article  CAS  PubMed  Google Scholar 

  52. Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108

    Article  CAS  PubMed  Google Scholar 

  53. Zhou GK, Xu YF, Liu JY (2005) Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol 162:686–696

    Article  CAS  PubMed  Google Scholar 

  54. Rupesh KS, Sivalingam A, Shweta S, Vikas YP, Zakwan A et al (2011) Metallothionein-like gene from Cicer microphyllumis regulated by multiple abiotic stresses. Protoplasma 248:839–847

    Article  Google Scholar 

  55. Hsieh HM, Huang PC (1998) Promoter structure and activity of type I rice metallothionein-like gene. Mitochondrial DNA 9(1):9–18

    Article  CAS  Google Scholar 

  56. Peroza EA, Schmucki Guntert P, Freisinger E, Zerbe O (2009) The βE-domain of wheat Ec-1 metallothionein: a metal-binding domain with a distinctive structure. J Mol Biol 387:207–218

    Article  CAS  PubMed  Google Scholar 

  57. Peroza EA, Kaabi AA, Meyer-Klaucke W, Wellenreuther G, Freisinger E (2009) The two distinctive metal ion binding domains of the wheat metallothionein Ec-1. J Inorg Biochem 103:342–353

    Article  CAS  PubMed  Google Scholar 

  58. Loebus J, Peroza EA, Bluthgen N et al (2011) Protein and metal cluster structure of the wheat metallothionein domain γ-Ec-1: the second part of the puzzle. J Biol Inorg Chem. doi:10.1007/s00775-011-0770-2

    PubMed  Google Scholar 

  59. Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72:131–139

    Article  CAS  Google Scholar 

  60. Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287

    Article  CAS  PubMed  Google Scholar 

  61. Guo GJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhang YW, Tan NFY, Wong YS (2004) Cloning and characterization of type 2 metallothionein-like gene from a wetland plant Typha latifolia. Plant Sci 167:869–877

    Article  CAS  Google Scholar 

  63. Van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H et al (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 4:1519–1526

    Article  Google Scholar 

  64. Chang T, Liu X, Xu H, Meng K, Chen S (2004) A metallothionein-like gene htMT2 strongly expressed in internodes and nodes of Helianthus tuberosa and effect of metal ion treatment on its expression. Planta 218:449–455

    Article  CAS  PubMed  Google Scholar 

  65. Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164:83–93

    Article  CAS  Google Scholar 

  66. Usha B, Prashanth SR, Parida A (2007) Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh. Curr Sci 93:1215–1219

    CAS  Google Scholar 

  67. Lacerda LD (1998) Biogeochemistry of trace metals and diffuse pollution in mangrove ecosystems. International Society for Mangrove Ecosystems, Okinawa 65

    Google Scholar 

  68. Olivares AR, Carillo-Gonzalez R, Gonzalez-Chavez MCA, Hernandez RMS (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manag 114:316–323

    Article  Google Scholar 

  69. Mac Farlane GR, Burchett MD (2000) Cellular distribution of copper, lead, and zinc in the grey mangrove, Avicennia maria (Forsk.) Vierh. Aquat Bot 68:45–59

    Article  CAS  Google Scholar 

  70. Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation 6(3):269–287

    Article  CAS  PubMed  Google Scholar 

  71. Belleghem FV, Cuypers A, Semane B, Smeets K, Vangronsveld J (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    Article  PubMed  Google Scholar 

  72. Rabier J, Laffont-Schwob I, Notonier R, Fogliani B, Bouraïma-Madjèbi S (2008) Anatomical element localization by EDXS in Grevillea exul var. exul under nickel stress. Environ Pollut 156:1156–1163

    Article  CAS  PubMed  Google Scholar 

  73. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  74. Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–213

    Article  CAS  Google Scholar 

  75. Jamil S, Abhilash PC, Singh N, Sharma PN (2009) Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater 172:269–275

    Article  CAS  PubMed  Google Scholar 

  76. Jia D, Jing-Li Y, Cheng-Hao L (2012) Advances in metallothionein studies in forest trees. Plant Omics J 5(1):46–51

    Google Scholar 

  77. Gong JM, Lee DA, Schroeder JI (2003) Long distance root-to-shoot transport of phytochelatins and cadmium in plants. Proc Natl Acad Sci USA 100(17):10118–10123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by DST grant (DST/IS-STAC/CO2-SR-68/09) from Department of Science and Technology, Government of India. We are thankful to DST-FIST facility of department of Plant Sciences, DBT-CREBB facility of School of Life Sciences and CIL of University of Hyderabad for providing SEM facility. Shalini Mudalkar and Debashree Sengupta are indebted to UGC and CSIR, New Delhi, India, respectively for the fellowship. Ramesh Golla was supported by Dr. D.S. Kothari Postdoctoral fellowship from UGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attipalli Ramachandra Reddy.

Additional information

Shalini Mudalkar and Ramesh Golla have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Sequence alignment of MT2 from different plants which were used to design primers JcMTF and JcMTR from the conserved regions highlighted in blue using Clustal W (TIFF 648 kb)

Supplementary Fig. 2

Sequence alignment of genomic and cDNA regions of JcMT2a (TIFF 228 kb)

Supplementary Fig. 3

Protein parameters and ORF finder results of JcMT2a protein (TIFF 314 kb)

Supplementary Fig. 4

Multiple alignment of JcMT2a protein sequence with MT2 like proteins of Ricicnus, Nelumbo, Elaeis, Sesbania and Salvia (TIFF 181 kb)

Supplementary Fig. 5

BLAST analysis showing the sequence alignment and percentage similarity of JcMT2a with MTs of other plant species (TIFF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudalkar, S., Golla, R., Sengupta, D. et al. Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant. Mol Biol Rep 41, 113–124 (2014). https://doi.org/10.1007/s11033-013-2843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2843-5

Keywords

Navigation