Skip to main content
Log in

Type 1 metallothionein (ZjMT) is responsible for heavy metal tolerance in Ziziphus jujuba

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that are able to make cells to uptake heavy metals from the environment. Molecular and functional characterization of this gene family improves understanding of the mechanisms underlying heavy metal tolerance in higher organisms. In this study, a cDNA clone, encoding 74-a.a. metallothionein type 1 protein (ZjMT), was isolated from the cDNA library of Ziziphus jujuba. At the N- and C-terminals of the deduced amino acid sequence of ZjMT, six cysteine residues were arranged in a CXCXXXCXCXXXCXC and CXCXXXCXCXXCXC structure, respectively, indicating that ZjMT is a type 1 MT. Quantitative PCR analysis of plants subjected to cadmium stress showed enhanced expression of ZjMT gene in Z. jujuba within 24 h upon Cd exposure. Escherichia coli cells expressing ZjMT exhibited enhanced metal tolerance and higher accumulation of metal ions compared with control cells. The results indicate that ZjMT contributes to the detoxification of metal ions and provides marked tolerance against metal stresses. Therefore, ZjMT may be a potential candidate for tolerance enhancement in vulnerable plants to heavy metal stress and E. coli cells containing the ZjMT gene may be applied to adsorb heavy metals in polluted wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verbruggen, N., Hermans, C., and Schat, H. (2009) Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 181, 759–776.

    Article  CAS  PubMed  Google Scholar 

  2. Chao, Y.-E., Zhang, M., Feng, Y., Yang, X.-E., and Islam, E. (2010) cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction, Environ. Exp. Bot., 68, 107–112.

    Article  CAS  Google Scholar 

  3. Becher, M., Talke, I. N., Krall, L., and Kramer, U. (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri, Plant J., 37, 251–268.

    Article  CAS  PubMed  Google Scholar 

  4. Kramer, U., Talke, I. N., and Hanikenne, M. (2007) Transition metal transport, FEBS Lett., 581, 2263–2272.

    Article  PubMed  Google Scholar 

  5. Talke, I. N., Hanikenne, M., and Kramer, U. (2006) Zincdependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri, Plant Physiol., 142, 148–167.

    CAS  PubMed  Google Scholar 

  6. Weber, M., Trampczynska, A., and Clemens, S. (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri, Plant Cell Environ., 29, 950–963.

    Article  CAS  PubMed  Google Scholar 

  7. Hammond, J. P., Bowen, H. C., White, P. J., Mills, V., Pyke, K. A., Baker, A. J. M., Whiting, S. N., May, S. T., and Broadley, M. R. (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes, New Phytol., 170, 239–260.

    Article  CAS  PubMed  Google Scholar 

  8. Van De Mortel, J. E., Villanueva, L. A., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P. D., Van Themaat, E. V. L., Koornneef, M., and Aarts, M. G. M. (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens, Plant Physiol., 142, 1127–1147.

    CAS  PubMed  Google Scholar 

  9. Gendre, D., Czernic, P., Conejero, G., Pianelli, K., Briat, J. F., Lebrun, M., and Mari, S. (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter, Plant J., 49, 1–15.

    Article  CAS  PubMed  Google Scholar 

  10. Margoshes, M., and Vallee, B. L. (1957) A cadmium protein from equine kidney cortex, J. Am. Chem. Soc., 79, 4813–4814.

    Article  CAS  Google Scholar 

  11. Bataineh, Z. M., Heidger, P. M., Jr., Thompson, S. A., and Timms, B. G. (1986) Immunocytochemical localization of metallothionein in the rat prostate gland, Prostate, 9, 397410.

    Article  Google Scholar 

  12. Thirumoorthy, N., Kumar, K. M., Sundar, A. S., Panayappan, L., and Chatterjee, M. (2007) Metallothionein: an overview, World J. Gastroenterol., 13, 993–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vallee, B. L. (1991) Introduction to metallothionein, Methods Enzymol., 205, 3–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ernst, W. H. O., Krauss, G. J., Verkleij, J. A. C., and Wesenberg, D. (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view, Plant Cell Environ., 31, 123–143.

    CAS  PubMed  Google Scholar 

  15. Kagi, J. H. R., and Schaffer, A. (1988) Biochemistry of metallothionein, Biochemistry, 27, 8509–8515.

    Article  CAS  PubMed  Google Scholar 

  16. Cobbett, C., and Goldsbrough, P. (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol., 53, 159–182.

    Article  CAS  PubMed  Google Scholar 

  17. Coyle, P., Philcox, J. C., Carey, L. C., and Rofe, A. M. (2002) Metallothionein: the multipurpose protein, Cell. Mol. Life Sci., 59, 627–647.

    Article  CAS  PubMed  Google Scholar 

  18. Sanita di Toppi, L., and Gabbrielli, R. (1999) Response to cadmium in higher plants, Environ. Exp. Bot., 41, 105130.

    Article  Google Scholar 

  19. Shim, D., Hwang, J. U., Lee, J., Lee, S., Choi, Y., An, G., Martinoia, E., and Lee, Y. (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice, Plant Cell, 21, 4031–4043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maraghni, M., Gorai, M., Neffati, M., and Labeke, M. C. V. (2014) Differential responses to drought stress in leaves and roots of wild jujube, Ziziphus lotus, Acta Physiol. Plant., 36, 945–953.

    Article  CAS  Google Scholar 

  21. Kulkarni, M., Schneider, B., Raveh, E., and Tel-Zur, N. (2010) Leaf anatomical characteristics and physiological responses to short-term drought in Ziziphus mauritiana (Lamk.), Sci. Hortic., 124, 316–322.

    Article  CAS  Google Scholar 

  22. Kotoda, N., Wada, M., Komori, S., Kidou, S., Abe, K., Masuda, T., and Soejima, J. (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple, J. Am. Soc. Hortic. Sci., 125, 398–403.

    CAS  Google Scholar 

  23. Larkin, M. P., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics, 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, H. F., Meng, Y. P., Cui, G. M., Cao, Q. F., Li, J., and Liang, A. H. (2009) Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujuba Mill.), Mol. Biol. Rep., 36, 2183–2190.

    Article  CAS  PubMed  Google Scholar 

  25. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(??C(T)) method, Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  26. Hansen, B. H., Romma, S., Garmo, O. A., Olsvik, P. A., and Andersen, R. A. (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels, Comp. Biochem. Phys. C, 143, 263–274.

    CAS  Google Scholar 

  27. Atif, F., Kaur, M., Yousuf, S., and Raisuddin, S. (2006) In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch, Chem. Biol. Interact., 162, 172–180.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, C., Zhang, F., Cao, W., and Wang, J. (2014) The identification of metallothionein in rare minnow (Gobiocypris rarus) and its expression following heavy metal exposure, Environ. Toxicol. Pharmacol., 37, 1283–1291.

    Article  CAS  PubMed  Google Scholar 

  29. Han, Y. L., Zhang, S., Liu, G. D., Long, L. L., Wang, Y. F., Yang, W. X., and Zhu, J. Q. (2015) Cloning, characterization and cadmium inducibility of metallothionein in the testes of the mudskipper Boleophthalmus pectinirostris, Ecotoxicol. Environ. Safety, 119, 1–8.

    Article  CAS  PubMed  Google Scholar 

  30. Santovito, G., Boldrin, F., and Irato, P. (2015) Metal and metallothionein distribution in different tissues of the Mediterranean clam Venerupis philippinarum during copper treatment and detoxification, Comp. Biochem. Phys. C, 174175, 46–53.

    Google Scholar 

  31. Lavradas, R. T., Hauser-Davis, R. A., Lavandier, R. C., Rocha, R. C. C., Pierre, T. D. S., Seixas, T., Kehrig, H. A., and Moreira, I. (2014) Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil, Ecotoxicol. Environ. Safety, 107, 55–60.

    Article  CAS  PubMed  Google Scholar 

  32. Murphy, A., and Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes, Plant Physiol., 109, 945–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dundar, E., Sonmez, G. D., and Unver, T. (2015) Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential, Mol. Genet. Genom., 290, 187–199.

    Article  CAS  Google Scholar 

  34. Tomas, M., Pagani, M. A., Andreo, C. S., Capdevila, M., Atrian, S., and Bofill, R. (2015) Sunflower metallothionein family characterization. Study of the Zn(II)and Cd(II)binding abilities of the HaMT1 and HaMT2 isoforms, J. Inorg. Biochem., 148, 35–48.

    Article  CAS  PubMed  Google Scholar 

  35. Klaassen, C. D., Liu, J., and Choudhuri, S. (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity, Annu. Rev. Pharmacol., 39, 267–294.

    Article  CAS  Google Scholar 

  36. Yan, L., Yue, Y. C., Shu, G. Y., and Wei, M. T. (2015) Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals, Biochem. Biophys. Res. Commun., 461, 95–101.

    Google Scholar 

  37. Sun, H. K., Jeong, J. C., Ahn, Y. O., Lee, H. S., and Kwak, S. S. (2014) Differential responses of three sweet potato metallothionein genes to abiotic stress and heavy metals, Mol. Biol. Rep., 41, 6957–6966.

    Article  Google Scholar 

  38. Akashi, K., Nishimura, N., Ishida, Y., and Yokota, A. (2004) Potent hydroxyl radical scavenging activity of drought-induced type-2 metallothionein in wild watermelon, Biochem. Biophys. Res. Commun., 323, 72–78.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J., Shi, X., Qian, M., Zheng, L., Lian, C., Xia, Y., and Shen, Z. (2015) Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana, J. Hazard. Mater., 294, 99–108.

    Article  CAS  PubMed  Google Scholar 

  40. Gu, C. S., Liu, L. Q., Deng, Y. M., Zhu, X. D., Huang, S. Z., and Lu, X. Q. (2015) The heterologous expression of the Iris lactea var. chinensis type2 metallothionein IlMT2b gene enhances copper tolerance in Arabidopsis thaliana, Bull. Environ. Contam. Toxicol., 94, 247–253.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., and Ruan, C. (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities, J. Hazard. Mater., 174, 1–8.

    CAS  PubMed  Google Scholar 

  42. Ai, P. L., and Aris, A. Z. (2014) A review on economically adsorbents on heavy metals removal in water and wastewater, Rev. Environ. Sci. Biotechnol., 13, 163–181.

    Article  Google Scholar 

  43. Sen, A., Pereira, H., Olivella, M. A., and Villaescusa, I. (2015) Heavy metals removal in aqueous environments using bark as a biosorbent, Int. J. Environ. Sci. Technol., 12, 391–404.

    Article  CAS  Google Scholar 

  44. Srivastava, S., Agrawal, S. B., and Mondal, M. K. (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin, Environ. Sci. Pollut. Res. Int., 22, 15386–15415.

    Article  PubMed  Google Scholar 

  45. Kim, S., Song, M. H., Wei, W., and Yun, Y. S. (2015) Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution, J. Hazard. Mater., 283, 657–662.

    Article  CAS  PubMed  Google Scholar 

  46. Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N., and Rehman, A. (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium, Appl. Microbiol. Biotechnol., 99, 10745–10757.

    Article  CAS  PubMed  Google Scholar 

  47. Lin, K. H., Chien, M. F., Hsieh, J. L., and Huang, C. C. (2010) Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein, Appl. Microbiol. Biotechnol., 87, 561–569.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Guang Liu.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-377, March 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LS., Meng, YP., Cao, QF. et al. Type 1 metallothionein (ZjMT) is responsible for heavy metal tolerance in Ziziphus jujuba . Biochemistry Moscow 81, 565–573 (2016). https://doi.org/10.1134/S000629791606002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791606002X

Key words

Navigation