Skip to main content
Log in

Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates

  • Research Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

It is notable that the occurrence of multiple sex chromosomes differs significantly between major lineages of amniote vertebrates. In this respect, birds are especially conspicuous, as multiple sex chromosomes have not been observed in this lineage so far. On the other hand, in mammals, multiple sex chromosomes have evolved many times independently. We hypothesize that this contrast can be related to the different involvement of sex-specific sex chromosomes in female meiosis subjected to the female meiotic drive under male versus female heterogamety. Essentially, the male-specific Y chromosome is not involved in female meiosis and is therefore sheltered against the effects of the female meiotic drive affecting the X chromosome and autosomes. Conversely, the Z and W sex chromosomes are both present in female meiosis. Nonrandom segregation of these sex chromosomes as a consequence of their rearrangements connected with the emergence of multiple sex chromosomes would result in a biased sex ratio, which should be penalized by selection. Therefore, the emergence of multiple sex chromosomes should be less constrained in the lineages with male rather than female heterogamety. Our broader phylogenetic comparison across amniotes supports this prediction. We suggest that our results are consistent with the widespread occurrence of female meiotic drive in amniotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Axelsson E, Albrechtsen E, van AP, Li L, Megens HJ, Vereijken ALJ, Crooijmans RPMA, Groenen MAM, Ellegren H, Willerslev E, Nielsen R (2010) Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity 105:290–298

    Article  PubMed  CAS  Google Scholar 

  • Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124

    Article  PubMed  CAS  Google Scholar 

  • Chaiprasertsri N, Uno Y, Peyachoknagul S, Prakhongcheep O, Baicharoen S, Charernsuk S, Nishida C, Matsuda Y, Koga A, Srikulnath K (2013) Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota). J Hered 104:798–806

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  PubMed  CAS  Google Scholar 

  • Christidis L (1990) Animal cytogenetics 4: Chordata 3 B: Aves. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • de Villena FPM, Sapienza C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189

    Google Scholar 

  • Dinkel BJ, O’Laughlin-Phillips EA, Fechheimer NS, Jaap RG (1979) Gametic products transmitted by chickens heterozygous for chromosomal rearrangements. Cytogenet Cell Genet 23:124–136

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2010) Evolutionary stasis: the stable chromosomes of birds. Trends Ecol Evol 25:283–291

    Article  PubMed  Google Scholar 

  • Ezaz T, Stiglec R, Veyrunes F, Marshall Graves JA (2006) Relationships between vertebrate ZW and XY sex chromosome systems. Curr Biol 16:R736–R743

    Article  PubMed  CAS  Google Scholar 

  • Ezaz T, Quinn AE, Sarre SD, O’Meally D, Georges A, Graves JAM (2009) Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosom Res 17:91–98

    Article  CAS  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    Article  PubMed  CAS  Google Scholar 

  • Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559–1562

    Article  PubMed  CAS  Google Scholar 

  • Gamble T (2010) A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex Dev 4:88–103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gorman GC (1973) The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Chiarelli AB, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic Press Inc, New York, pp 349–424

  • Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901–914

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Robertson LBW, Tempest HG, Skinner BM (2007) The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 117:64–77

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, O’Brien PCM, Martin S, Ferguson-Smith MA (2012) Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet Genome Res 136:303–307

    Article  PubMed  CAS  Google Scholar 

  • Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y (2007) Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117:92–102

    Google Scholar 

  • Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, Kubat Z, Kovarik J, Jamilena M, Vyskot B (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE 8:e45519

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kitano J, Peichel CL (2012) Turnover of sex chromosomes and speciation in fishes. Environ Biol Fish 94:549–558

    Article  Google Scholar 

  • Kobayashi T, Yamada F, Hashimoto T, Abe S, Matsuda Y, Kuroiwa A (2008) Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat. Chromosom Res 16:587–593

    Article  CAS  Google Scholar 

  • Li WH, Yi S, Makova K (2002) Male-driven evolution. Curr Opin Genet Dev 12:650–656

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y, Nishimura O, Ishijima J, Hayashi A, Saito T, Murakami T, Murakami Y, Kuratani A, Agata K (2005) Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosom Res 13:601–615

    Article  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Gilbert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Page G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Wormack JE, O’Brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková-Frydrychová R, Neven LG, Sahara K, Marec F (2013) Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A 110:6931–6936

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Brien SJ, Menninger JC, Nash WG (eds) (2006) Atlas of mammalian chromosomes. Wiley, New York

    Google Scholar 

  • O’Meally D, Patel HR, Stiglec R, Sarre SD, Georges A, Graves JAM, Ezaz T (2010) Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosom Res 18:787–800

    Article  CAS  Google Scholar 

  • O’Neill RJ, Eldridge MDB, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95:375–381

    Article  PubMed  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin

    Book  Google Scholar 

  • Ohno S (1969) Evolution of sex chromosomes in mammals. Annu Rev Genet 3:495–524

    Article  Google Scholar 

  • Olmo E (2008) Trends in the evolution of reptilian chromosomes. Integr Comp Biol 48:486–493

    Article  PubMed  Google Scholar 

  • Pala I, Naurin S, Stervander M, Hasselquist D, Bensch S, Hansson B (2011) Evidence of a neo-sex chromosome in birds. Heredity 108:264–272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pokorná M, Kratochvíl L (2009) Phylogeny of sex–determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linnean Soc 156:68–183

    Article  Google Scholar 

  • Pokorná M, Rábová M, Ráb P, Ferguson-Smith MA, Rens W, Kratochvíl L (2010) Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosom Res 18:809–820

    Article  CAS  Google Scholar 

  • Pokorná M, Kratochvíl L, Kejnovský E (2011a) Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet 12:90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, O’Brien PC, Caputo V, Olmo E, Ferguson-Smith MA, Rens W (2011b) Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455–468

    Article  PubMed  Google Scholar 

  • Pokorná M, Giovannotti M, Kratochvíl L, Caputo V, Olmo E, Ferguson-Smith MA, Rens W (2012) Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting. Chromosoma 121:409–418

    Article  PubMed  CAS  Google Scholar 

  • Rens W, O’Brien PC, Grutzner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov V, Selton H, Wallis MC, Johnston S, Veyrunez F, Graves JAM, Ferguson-Smith MA (2007) The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol 8:R243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rice WR (1996) Evolution of the Y sex chromosome in animals: Y chromosomes evolve through the degeneration of autosomes. Bioscience 46:331–343

    Article  Google Scholar 

  • Rovatsos M, Altmanová M, Pokorná M, Kratochvíl L (2014a) Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution. doi:10.1111/evo.12357

  • Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L (2014b) Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett (in press)

  • Rutkowska J, Lagisz M, Nakagawa S (2012) The long and the short of avian W chromosomes: no evidence for gradual W shortening. Biol Lett 8:636–638

    Article  PubMed Central  PubMed  Google Scholar 

  • Toder R, O’Neill RJ, Wienberg J, O’Brien PC, Voullaire L, Graves JAM (1997) Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system. Mamm Genome 8:418–422

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Sahara K, Marec F (2007) Sex chromosomes and sex determination in Lepidoptera. Sex Dev 1:332–346

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela N, Adams DC (2011) Chromosome number and sex determination coevolve in turtles. Evolution 65:1808–1813

    Article  PubMed  Google Scholar 

  • Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D (2013) Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol 11:e1001643

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Volff JN, Schartl M (2001) Variability of genetic sex determination in poeciliid fishes. Genetica 111:101–110

    Article  PubMed  CAS  Google Scholar 

  • Vorontsov NN, Lyapunova EA, Borissov YM, Dovgal VE (1984) Variability of sex chromosomes in mammals. Genetica 52:361–372

    Article  Google Scholar 

  • Voss SR, Kump DK, Putta S, Pauly N, Reynolds A, Henry RJ, Basa S, Walker JA, Smith JJ (2011) Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res 21:1306–1312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wells DE, Gutierrez L, Xu Z, Krylov V, Macha J, Blankenburg KP, Hitchens M, Bellot LJ, Spivey M, Stemple DL, Kowis A, Ye Y, Pasternak S, Owen J, Tran T, Slavikova R, Tumova L, Tlapakova T, Seifertova E, Scherer SE, Sater AK (2011) A genetic map of Xenopus tropicalis. Dev Biol 354:1–8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wurster DH, Benirschke K (1970) Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:1364–1366

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kitano J (2012) The contribution of female meiotic drive to the evolution of neo–sex chromosomes. Evolution 66:3198–3208

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to the editor, Darren K. Griffin, for the kind invitation to include our work in this special issue. This study was supported by grants GAČR 506/10/0718 and GA UK 591712. This article represents part seven of the series “Evolution of sex determining systems in lizards” by Martina Pokorná and Lukáš Kratochvíl.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martina Pokorná or Lukáš Kratochvíl.

Additional information

Responsible Editor: Darren K. Griffin and Beth A. Sullivan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

List of species with multiple sex chromosomes (XLSX 27 kb)

Table S2

Numbers of identified independent origins of multiple sex chromosomes, numbers of species with known multiple neo-sex chromosomes, numbers of karyotyped species and numbers of species with known sex chromosomes across amniote lineages (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokorná, M., Altmanová, M. & Kratochvíl, L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Res 22, 35–44 (2014). https://doi.org/10.1007/s10577-014-9403-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9403-2

Keywords

Navigation