Skip to main content
Log in

Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Two species of Ryukyu spiny rat, Tokudaia osimensis and Tokudaia tokunoshimensis, have an XO/XO sex chromosome constitution with no cytogenetically visible Y chromosome in both sexes. The single X chromosomes of T. osimensis and T. tokunoshimensis are submetacentric and subtelocentric, respectively. It was therefore suggested that a pericentric inversion event occurred in the X chromosome of either species. To identify X chromosome rearrangements that have occurred between the two species, we mapped 22 mouse cDNA clones of the X-linked genes on the chromosomes of the two species by direct R-banding FISH. The gene orders of the X chromosomes were conserved in the two species, whereas the position of the centromere on the X chromosome was different. This result indicates that the rearrangement which occurred in either of the X chromosomes after the two species diverged from a common ancestor involved not pericentric inversion but centromere repositioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa Y, Nishida-Umehara C, Matsuda Y, Sutou S, Suzuki H (2002) X chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat. Cytogenet Genome Res 99: 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Nergadze SG, Magnani E et al. (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87: 777–782.

    Article  PubMed  CAS  Google Scholar 

  • Everts-van der Wind A, Kata SR, Band MR, Rebeiz M (2004) A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome Res 14: 1424–1437.

    Article  PubMed  CAS  Google Scholar 

  • Fredga K (1988) Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Phil Trans R Soc Lond B Biol Sci 322: 83–95.

    Article  CAS  Google Scholar 

  • Honda T, Suzuki H, Itoh M (1977) An unusual sex chromosome constitution found in the Amami spinous country-rat, Tokudaia osimensis osimensis. Jpn J Genet 52: 247–249.

    Article  Google Scholar 

  • Honda T, Suzuki H, Itoh M, Hayashi K (1978) Karyotypical differences of the Amami spinous country-rats, Tokudaia osimensis osimensis obtained from two neighboring islands. Jpn J Genet 53: 297–299.

    Article  Google Scholar 

  • Joseph AM, Chandley AC (1984) The morphological sequence of XY pairing in the Norway rat Rattus norvegicus. Chromosoma 89: 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102: 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Yamada F, Hashimoto T et al. (2007) Exceptional minute sex-specific region in the XO mammal, Ryukyu spiny rat. Chromosome Res 15: 175–187.

    Article  PubMed  CAS  Google Scholar 

  • Koller PC, Darlington CD (1934) The genetical and mechanical properties of the sex chromosomes. I. Rattus norvegicus, O. J Genet 29: 159–173.

    Google Scholar 

  • Kuroiwa A, Watanabe T, Hishigaki H et al. (1998) Comparative FISH mapping of mouse and rat homologues of twenty-five human X-linked genes. Cytogenet Cell Genet 81: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa A, Tsuchiya K, Watanabe T et al. (2001) Conservation of the rat X chromosome gene order in rodent species. Chromosome Res 9: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2003) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12: 711–718.

    Article  Google Scholar 

  • Matsuda Y, Chapman VM (1995) Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16: 261–272.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Harada Y-N, Natsuume-Sakai S et al. (1992) Location of the mouse complement factor H gene (cfh) by FISH analysis and replication R-banding. Cytogenet Cell Genet 61: 282–285.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S et al. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet 36: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Kuroiwa A, Nishida-Umehara C et al. (2007) Comparative chromosome painting map between two Ryukyu spiny rat species, Tokudaia osimensis and Tokudaia tokunoshimensis (Muridae, Rodentia). Chromosome Res 15: 799–806.

    Article  PubMed  CAS  Google Scholar 

  • Nesterova TB, Duthie SM, Mazurok NA et al. (1998) Comparative mapping of X chromosomes in vole species of the genus Microtus. Chromosome Res 6: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Oakenfull EA, Lim HN, Ryder OA (2000) A survey of equid mitochondrial DNA: Implication for the evolution, genetic diversity and conservation of Equus. Conserv Genet 1: 341–355.

    Article  CAS  Google Scholar 

  • Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V (1998) Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm Genome 9: 590–592.

    Article  PubMed  CAS  Google Scholar 

  • Sutou S, Mitsui Y, Tsuchiya K (2001) Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm Genome 12: 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Iwasa MA, Ishii N, Nagaoka H, Tsuchiya K (1999) The genetic status of the insular populations of the endemic spiny rat Tokudaia osimensis (Rodentia, Muridae) of the Ryukyu Islands, Japan. Mamm Study 24: 43–50.

    Article  Google Scholar 

  • Tsuchiya K, Wakana S, Suzuki H, Hattori S, Hayashi Y (1989) Taxonomic study of Tokudaia (Rodentia: Muridae): I. Genetic differentiation. Memoirs Natl Sci Museum, Tokyo 22: 227–234.

    Google Scholar 

  • Tyler-Smith C, Gimelli G, Giglio S et al. (1999) Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet 64: 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11: 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Weigl S, Carbone L et al. (2004) Recurrent site for new centromere seeding. Genome Res 14: 1696–1703.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asato Kuroiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Yamada, F., Hashimoto, T. et al. Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat. Chromosome Res 16, 587–593 (2008). https://doi.org/10.1007/s10577-008-1199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1199-5

Key words

Navigation