Skip to main content
Log in

Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP+-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adu MO, Sparkes DL, Parmar A, Yawson DO (2011) ‘Stay green’ in wheat: comparative study of modern bread wheat and ancient wheat cultivars. ARPN J Agric Biol Sci 6:16–24

    Google Scholar 

  • Amako K, Chen G-X, Asada K (1994) Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidise in plants. Plant Cell Physiol 35:497–504

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot. doi:10.1155/2012/985298

    Google Scholar 

  • Borrell AK, Hammer GL, Douglas ACL (2000) Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci 40:1026–1037

    Article  Google Scholar 

  • Borrell AK, Hammer G, Oosterom E (2001) Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling? Ann Appl Biol 138:91–95

    Article  Google Scholar 

  • Borrelli GM, Troccoli A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem 76:335–340

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol 33:821–834

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of plant senescence: a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  • Cairns JE, Sanchez C, Vargas M, Ordoñez R, Araus JL (2012) Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J Integr Plant Biol 54:1007–1020. doi:10.1111/j.1744-7909.2012.01156.x

    Article  PubMed  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90:19–34

    Article  Google Scholar 

  • Cha KW, Lee YJ, Koh HJ, Lee BM, Nam YW, Paek NC (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Gen 104:526–532

    Article  CAS  Google Scholar 

  • Chen J, Liang Y, Hu X, Wang X, Tan F, Zhang H, Ren Z, Luo P (2010) Physiological characterization of ‘stay green’ wheat cultivars during the grain filling stage under field growing conditions. Acta Physiol Plant 32:875–882

    Article  CAS  Google Scholar 

  • Day DA, Mannix M (1988) Malate oxidation by soybean nodule mitochondria and the possible consequences for nitrogen fixation. Plant Physiol Biochem 26:567–573

    CAS  Google Scholar 

  • Del Río LA, Ortega MG, López AL, Gorgé JL (1977) A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Anal Biochem 80:409–415

    Article  PubMed  Google Scholar 

  • Derkx AP, Orford S, Griffiths S, Foulkes MJ, Hawkesford MJ (2012) Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J Integr Plant Biol 54:555–566

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297. doi:10.1146/annurev.arplant.53.100301.135248

    Article  CAS  PubMed  Google Scholar 

  • Flagella Z, Pastore D, Campanile RG, Di Fonzo N (1994) Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars. J Agric Sci 122:183–192

    Article  CAS  Google Scholar 

  • Flagella Z, Pastore D, Campanile RG, Di Fonzo N (1995) The quantum yield of photosynthetic electron transport evaluated by chlorophyll fluorescence as an indicator of drought tolerance in durum wheat. J Agric Sci 125:325–329

    Article  CAS  Google Scholar 

  • Flagella Z, Campanile RG, Ronga G, Stoppelli MC, Pastore D, De Caro A, Di Fonzo N (1996) The maintenance of the photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivar differing in drought resistance. Plant Sci 118:127–133

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong Y-H, Zhang J, Gao J-F, Lu J-Y, Wang J-R (2005) Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). J Agron Crop Sci 191:292–299

    Article  CAS  Google Scholar 

  • Grassl J, Pružinská A, Hörtensteiner S, Taylor NL, Millar AH (2012) Early events in plastid protein degradation in stay-green Arabidopsis reveal differential regulation beyond the retention of LHCII and chlorophyll. J Proteome Res 11:5443–5452

    Article  CAS  PubMed  Google Scholar 

  • Guiboilleau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. Comptes Rendus Biologies (C.R. Biologies) 333:382–391

    Google Scholar 

  • Habash DZ, Paul MJ, Parry MAJ, Keys AJ, Lawlor DW (1995) Increased capacity for photosynthesis in wheat grown at elevated CO2: the relationship between electron transport and carbon metabolism. Planta 197:482–489

    Article  CAS  Google Scholar 

  • Harris DA (1987) Spectrophotometric assays. In: Bashford CL, Harris DA (eds) Spectrophotometry and spectrofluorimetry: a practical approach. IRL Press, Oxford, pp 59–61

    Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  CAS  PubMed  Google Scholar 

  • Haussmann BI, Mahalakshmi V, Reddy BV, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    CAS  PubMed  Google Scholar 

  • Hildebrand DF (2006) Lipoxygenases. Physiol Plant 76:249–253. doi:10.1111/j.1399-3054.1989.tb05641.x

    Article  Google Scholar 

  • Hill CM, Pearson SA, Smith AJ, Rogers LJ (1985) Inhibition of chlorophyll synthesis in Hordeum vulgare by 3-amino 2,3-dihydrobenzoic acid (gabaculin). Biosci Rep 5:775–781

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  PubMed  Google Scholar 

  • Hui Z, Tian F-X, Wang G-k, Wang G-P, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep 31:1073–1084

    Google Scholar 

  • Joshi AK, Kumari M, Singh VP, Reddy CM, Kumar S, Rane J, Chand R (2007) Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 153:59–71

    Article  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481. doi:10.1007/s00709-011-0308-z

    Article  CAS  PubMed  Google Scholar 

  • Kumar U, Joshi AK, Kumari M, Paliwal R, Kumar S, Röder MS (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ x ‘Sonalika’ population. Euphytica 174:437–445. doi:10.1007/s10681-010-0155-6

    Article  Google Scholar 

  • Kumari M, Singh VP, Tripathi R, Joshi AK (2007) Variation for stay-green trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Developments in Plant Breeding, vol 12. Springer, Dordrecht, pp 357–363. Proceedings of the 7th International wheat conference, 27 November–2 December 2005, Mar del Plata, Argentina

  • Laus MN, Soccio M, Trono D, Liberatore MT, Pastore D (2011) Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters. A possible defence mechanism in the response to hyperosmotic stress. J Exp Bot 62:141–154

    Article  CAS  PubMed  Google Scholar 

  • Li H, Cai J, Liu F, Jiang D, Dai T, Cao W (2012) Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress. Func Plant Biol 39:71–81

    Article  Google Scholar 

  • Lim PO, Nam HG (2005) The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Curr Top Dev Biol 67:49–83

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kin HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin J-F, Wu S-H (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798. doi:10.1093/jxb/ers071

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Ren Z, Wu X, Zhang H, Zhang H, Feng J (2006) Structural and biochemical mechanism responsible for the stay-green phenotype in common wheat. Chin Sci Bull 51:2595–2603

    Article  CAS  Google Scholar 

  • Mae T, Kai N, Makino A, Ohira K (1984) Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant Cell Physiol 25:333–336

    CAS  Google Scholar 

  • Makino A, Osmond B (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96:355–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makino A, Mae T, Ohira K (1984) Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol 25:429–437

    CAS  Google Scholar 

  • Makino A, Mae T, Ohira K (1985) Enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase purified from rice leaves. Plant Physiol 79:57–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martini G, Ursini MV (1996) A new lease of life for an old enzyme. Bioassay 18:631–637

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6065

    CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Muto S, Uritani I (1970) Glucose-6-phosphate dehydrogenase from sweet potato. Plant Cell Physiol 11:767–776

    CAS  Google Scholar 

  • Naruoka Y, Sherman JD, Lanning SP, Blake NK, Martin JM, Talbert LE (2012) Genetic analysis of green leaf duration in spring wheat. Crop Sci 52:99–109

    Article  Google Scholar 

  • Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Le SK, Jeong SW, Hak SS, Koh HJ, Jeon JS, Park YI, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Trono D, Padalino L, Simone S, Valenti D, Di Fonzo N, Passarella S (2000) Linoleate hydroperoxidation and β-carotene bleaching activities in durum wheat semolina: characterization and inhibition by α-tocopherol and l-ascorbate. J Cereal Sci 31:41–54

    Article  CAS  Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Passarella S (2001) Alternative oxidase in durum wheat mitochondria, activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role. Plant Cell Physiol 42:1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218

    Article  CAS  PubMed  Google Scholar 

  • Procházková D, Wilhelmová N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401–406

    Article  Google Scholar 

  • Rampino P, Spano G, Pataleo S, Mita G, Napier JA, Di Fonzo N, Shewry PR, Perrotta C (2006) Molecular analysis of a durum wheat ‘stay green’ mutant: expression pattern of photosynthesis-related genes. J Cereal Sci 43:160–168

    Article  CAS  Google Scholar 

  • Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci 104:14169–14174

    Article  CAS  PubMed  Google Scholar 

  • Sedigheh HG, Mortazavian M, Norouzian D, Atyabi M, Akbarzadeh A, Hasanpoor K, Ghorbani M (2011) Oxidative stress and leaf senescence. BMC Res Notes 4:477. doi:10.1186/1756-0500-4-477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    Article  CAS  Google Scholar 

  • Spano G, Di Fonzo N, Perrotta C, Platani C, Ronga G, Lawlor DW, Napier JA, Shewry PR (2003) Physiological characterization of `stay green’ mutants in durum wheat. J Exp Bot 54:1415–1420

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Smart CM (1993) Crops that stay-green. Ann Appl Biol 123:193–219

    Article  Google Scholar 

  • Thomas H, Ougham H, Canter P, Donnison I (2002) What stay-green mutants tell us about nitrogen remobilization in leaf senescence. J Exp Bot 53:801–808

    Article  CAS  PubMed  Google Scholar 

  • Tian FX, Gong JF, Wang GP, Wang GK, Fan ZY, Wang W (2012) Improved drought resistance in a wheat stay-green mutant tasg1 under field conditions. Biol Plant 56:509–515

    Article  Google Scholar 

  • Tian, F Gong J, Zhang J, Zhang M, Wang G, Li A, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot doi:10.1093/jxb/ert004

  • Trono D, Soccio M, Laus MN, Pastore D (2013) The existence of phospholipase A2 activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.). Plant Sci 199–200:91–102

    Article  PubMed  Google Scholar 

  • Verlotta A, De Simone V, Mastrangelo AM, Cattivelli C, Papa R, Trono D (2010) Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol 10:263. doi:10.1186/1471-2229-10-263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verlotta A, Liberatore MT, Cattivelli L, Trono D (2013) Secretory phospholipases A2 in durum wheat (Triticum durum Desf.): gene expression, enzymatic activity, and relation to drought stress adaptation. Int J Mol Sci 14:5146–5169. doi:10.3390/ijms14035146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verma V, Foulkes MJ, WorlandAJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  • Wang A, Li Y, Zhang C (2012) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256

    Article  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini M, Bedhomme M, Lemaire SD, Trost P (2012) The emerging roles of protein glutathionylation in chloroplasts. Plant Sci 185–186:86–96

    Article  PubMed  Google Scholar 

  • Zhang Z, Li G, Gao H, Zhang L, Yang C, Liu P, Meng Q (2012) Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. PLoS ONE 7:e42936. doi:10.1371/journal.pone.0042936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128:54–62

    Article  CAS  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Christopher Berrie for scientific English language editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Trono.

Additional information

V. De Simone and M. Soccio contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Simone, V., Soccio, M., Borrelli, G.M. et al. Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. J Plant Res 127, 159–171 (2014). https://doi.org/10.1007/s10265-013-0584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0584-0

Keywords

Navigation