Skip to main content
Log in

Induction of DREB2A pathway with repression of E2F, jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation-specific freeze-resistant wheat crown

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold-acclimation-specific processes and pathways, we utilized cold acclimation transcriptomic data from two lines varying in freeze survival but not vernalization. These lines, designated freeze-resistant (FR) and freeze-susceptible (FS), were the source of crown tissue RNA. Well-annotated differentially expressed genes (p ≤ 0.005 and fold change ≥ 2 in response to 4 weeks cold acclimation) were used for gene ontology and pathway analysis. “Abiotic stimuli” was identified as the most enriched and unique for FR. Unique to FS was “cytoplasmic components.” Pathway analysis revealed the “triacylglycerol degradation” pathway as significantly downregulated and common to both FR and FS. The most enriched of FR pathways was “neighbors of DREB2A,” with the highest positive median fold change. The “13-LOX and 13-HPL” and the “E2F” pathways were enriched in FR only with a negative median fold change. The “jasmonic acid biosynthesis” pathway and four “photosynthetic-associated” pathways were enriched in both FR and FS but with a more negative median fold change in FR than in FS. A pathway unique to FS was “binding partners of LHCA1,” which was enriched only in FS with a significant negative median fold change. We propose that the DREB2A, E2F, jasmonic acid biosynthesis, and photosynthetic pathways are critical for discrimination between cold-acclimated lines varying in freeze survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beißbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465

    Article  PubMed  Google Scholar 

  • Bogner V, Leidel BA, Kanz KG, Mutschler W, Neugebauer EA, Biberthaler P (2011) Pathway analysis in microarray data: a comparison of two different pathway analysis devices in the same data set. Shock 35(3):245–251

    Article  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  PubMed  CAS  Google Scholar 

  • Chauvin LP, Houd M, Sarhan F (1993) A leaf-specific gene stimulated by light during wheat acclimation to low temperatures. Plant Mol Biol 23:255–265

    Article  PubMed  CAS  Google Scholar 

  • Chen T-H, Gusta L, Fowler DB (1983) Freezing injury and root development in winter cereals. Plant Physiol 73(3):773–777

    Article  PubMed  CAS  Google Scholar 

  • Christova PK, Christov NK, Imai R (2006) A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223(6):1207

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart E, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant Gramineae species. FEBS Lett 344(1):20–24

    Article  PubMed  CAS  Google Scholar 

  • de Jager SM, Menges M, Bauer U-M, Murray JAH (2001) Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol Biol 47(4):555–568

    Article  PubMed  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010a) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Phys 153(4):1846–1858

    Article  CAS  Google Scholar 

  • del Pozo JC, Boniotti MB, Gutierrez C (2002) Arabidopsis E2F2 functions in cell division and is degraded by the ubiquitin-SCFAtSKP2 pathway in response to light. Plant Cell 14:3057–3071

    Article  PubMed  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010b) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Phys 153(4):1846–1858

    Article  CAS  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81(2):77–91

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell 14(8):1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Gana JA, Sutton F, Kenefick DG (1997) cDNA structure and expression patterns of a low-temperature-specific wheat gene tacr7. Plant Mol Biol 34(4):643–650

    Article  PubMed  CAS  Google Scholar 

  • Ganeshan S, Sharma P, Young L, Kumar A, Fowler DB, Chibbar RN (2011) Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. Plant Mol Biol 75(4–5):379–398

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Dong C-H, Lee H, Zhu J, Xiong L (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress response in Arabidopsis. Plant Cell 17(1):256–267

    Article  PubMed  CAS  Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner NPA (1997) Cold acclimation and freezing tolerance. Plant Physiol 114(2):467–474

    PubMed  CAS  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48(5):913–923

    Article  PubMed  CAS  Google Scholar 

  • Gusta LV, Weiser CI (1972) Nucleic acid and protein changes in relation to cold acclimation and freezing injury of Korean boxwood leaves. Plant Physiol 49(1):9l–96l

    Article  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Han K (1997) Partial cDNA of freeze resistance-related gene in wheat isolated by differential display. In Master of Science Thesis South Dakota State. University, Plant Science

    Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1(2):e26

    Article  PubMed  Google Scholar 

  • Houde M, Danyluk J, Laliberts JF, Rassart E, Dhindsa RS, Sarhan F (1992) Cloning, characterization and expression of a cDNA encoding a 50 kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99(4):1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149

    Article  PubMed  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47(3):291–305

    Article  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collins F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix gene chip probe level data. Nucleic Acids Res 31(4):e15

    Article  PubMed  Google Scholar 

  • Janská A, Aprile A, Zamecnik J (2011) Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genomics 11(2):307–325

    Article  PubMed  Google Scholar 

  • Kenefick DG, Koepke JA, Sutton F (2002) Plant water uptake by hard red winter wheat (Triticum aestivum L.) genotypes at 2 degrees C and low light intensity. BMC Plant Biol 2:8

    Article  PubMed  Google Scholar 

  • Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60(12):3595–3609

    Article  PubMed  CAS  Google Scholar 

  • Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S (2005) Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80(3):185–197

    Article  PubMed  CAS  Google Scholar 

  • Kwon C, Bednarek P, Schulze-Lefert P (2008) Secretory pathways in plant immune responses. Plant Physiol 147(4):1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Laudencia-Chingcuanco D, Ganeshan S, You F, Fowler B, Chibbar R, Anderson O (2011) Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC Genomics 12:299

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Lee H, Xiong L, Zhu J-K (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. The Plant Cell 14(6):1235–1251

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Sakuma Y, Abe H, Kasuga M, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an ERF/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    PubMed  CAS  Google Scholar 

  • Mariconti L, Pellegrini B, Cantoni R, Stevens R, Bergounioux C, Cella R, Albani D (2002) The E2F family of transcription factors from Arabidopsis thaliana. J Biol Chem 277(12):9911–9919

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res., 33 (dtabase issue): D284–D288

  • Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Research 38 (Database issue): D204-D210.

  • Monroy AF, Dryanova A, Malette B, Oren DH, Ridha Farajalla M, Liu W, Danyluk J, Ubayasena LW, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64(4):409–423

    Article  PubMed  CAS  Google Scholar 

  • Olien CR (1967) Freezing stress and survival. Annu Rev Plant Physiol 18:387–408

    Article  Google Scholar 

  • Olien CR, Clark JL (1993) Changes in soluble carbohydrate composition of barley, wheat, and rye during winter. Crop Sci 85(1):21–29

    CAS  Google Scholar 

  • Pearce RS, Houlston CE, Atherton KM, Rixon JE, Harrison P, Hughes MA, Dunn MA (1998) Localization of expression of three cold-induced genes, blt101, blt4.9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiol 117(3):787–795

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Parra E, Xie Q, Boniotti MB, Gutierrez C (1999) The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G(1)/S regulators. Nucleic Acids Res 27(17):3527–3533

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Matsuda O, Iba K (2008) ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. Plant J 56(3):411–422

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal 31(3):279–292

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27(10):1048–1059

    Article  PubMed  CAS  Google Scholar 

  • Skinner DZ (2009) Post-acclimation transcriptome adjustment is a major factor in freezing tolerance of winter wheat. Funct Integr Genomics 9(4):513–523

    Article  PubMed  CAS  Google Scholar 

  • Su C-F, Wang Y-C, Hsieh T-H, Lu C-A, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153(1):145–158

    Article  PubMed  CAS  Google Scholar 

  • Sutton F, Ding X, Kenefick DG (1992) Group 3 LEA gene HVA1 regulation by cold acclimation and de-acclimation in two barley cultivars with varying freeze resistance. Plant Physiol 99(1):338–340

    Article  PubMed  CAS  Google Scholar 

  • Sutton F, Chen D, Ge X, Kenefick D (2009) Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and -susceptible, winter wheat mutant lines. BMC Plant Biology 9:34

    Article  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance, genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gilbreath TM III, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6(9):e24767. doi:10.1371/journal.pone.0024767

    Article  PubMed  CAS  Google Scholar 

  • Wells DG, Lay CL, Buchenau GW, Johnson VA, Finney KF (1969) Registration of Winoka wheat. Crop Science 9(9):526

    Article  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8(7):749–771

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M, Bassett C, Gusta LV (2003) An overview of cold hardiness in woody plants: seeing the forest through the trees. Hort Science 38(5):952–959

    Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23(9):893–902

    Article  Google Scholar 

  • Young MD, Oshlk A, Wakefield MJ, Smyth GK (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:14

    Article  Google Scholar 

  • Zhang L, Dunn MA, Pearce RS, Hughes MA (1993) Analysis of organ specificity of a low-temperature-responsive gene family in rye (Secale cereale L). J Exp Bot 44(12):1787–1793

    Article  CAS  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu J-K, Hasegawa PM, Bohnert HJ, Shi H, Yun D-J, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. PNAS 105(12):4945–4950

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of the Ph.D. training program of A.K and was made possible by support from the Sutton Laboratory, the SDSU Plant Science Dept., the Mathematics and Statistics Dept., the SDSU Experiment Station, and the Horvath Laboratory at USDA, Fargo, ND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedora Sutton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 3954 kb)

ESM 2

(XLSX 850 kb)

ESM 3

(XLSX 13 kb)

ESM 4

(XLSX 20 kb)

ESM 5

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karki, A., Horvath, D.P. & Sutton, F. Induction of DREB2A pathway with repression of E2F, jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation-specific freeze-resistant wheat crown. Funct Integr Genomics 13, 57–65 (2013). https://doi.org/10.1007/s10142-012-0303-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-012-0303-2

Keywords

Navigation