Skip to main content
Log in

Plant Cold Acclimation: The Role of Abscisic Acid

  • Thematic Article
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The freezing tolerance or cold acclimation of plants is enhanced over a period of time by temperatures below 10°C and by a short photoperiod in certain species of trees and grasses. During this process, freezing tolerance increases 2–8°C in spring annuals, 10–30°C in winter annuals, and 20–200°C in tree species. Gene upregulation and downregulation have been demonstrated to be involved in response to environmental cues such as low temperature. Evidence suggests ABA can substitute for the low temperature stimulus, provided there is also an adequate supply of sugars. Evidence also suggests there may be ABA-dependent and ABA-independent pathways involved in the acclimation process. This review summarizes the role of ABA in cold acclimation from both a historical and recent perspective. It is concluded that it is highly unlikely that ABA regulates all the genes associated with cold acclimation; however, it definitely regulates many of the genes associated with an increase in freezing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Sehi M, Shinozaki K 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P. 2000. Analysis of Arabidopsis glucose insensitive mutants, gin 5 and gin 6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    PubMed  CAS  Google Scholar 

  • Arora R, Wisniewski WE. 1994. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica (L.) Batsch): a 60-kilodalton bark protein in cold acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol 105:95–101

    Article  PubMed  CAS  Google Scholar 

  • Arroyo A, F Bossi, Finkelstein RR, León P. 2003. Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5 and constitutive triple response 1) are differently regulated by glucose in Arabidopsis. Plant Physiol 133:231–242

    Article  PubMed  CAS  Google Scholar 

  • Artlip T, Wisniewski ME. 1997. Tissue-specific expression of a dehydrin gene in one-year-old Rio Oso Gem peach Trees. J Am Soc Hort Sci 122:784–787

    Google Scholar 

  • Artlip TS, Callahan AS, Basset CL, Wisniewski ME. 1997. Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica L. Batsch). Plant Mol Biol 33:61–70

    Article  CAS  Google Scholar 

  • Balk P, Van der Geest L, Brønum P, Perks M, Van Wordragen M. 2004. Dehydrin gene family members are indicators for dormancy and cold hardiness status in bud tissue of Pinus sylvestris and Fagus sylvaticus. Plant and Animal Genome XII. The International Conference on the Status to Plant and Animal Genome Research. Abstr W86, p 26

  • Blumenfeld A, Bukovac MJ. 1972. Cuticular penetration of ABA. Planta 107:261–268

    Article  CAS  Google Scholar 

  • Chen THH, Gusta LV. 1983. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    CAS  PubMed  Google Scholar 

  • Chen THH, Gavinlertvatana P, Li PH. 1979. Cold acclimation of stem cultural plants and leaf callus of Solanum species. Bot Gaz 140:142–147

    Article  Google Scholar 

  • Chen THH, Li PH, Brenner ML 1983. Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71:362–365

    CAS  PubMed  Google Scholar 

  • Cheng W-H, Endo A, Zhou L, Penny J, Chen H-C 2002. A unique short-chain dehydrogenase/reductase in Arabdiposis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M. 2003. A method for profiling classes of plant hormones and their metabolites using chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Varner JE. 1967. Hormonal control of enzyme synthesis: on the mode of action of gibberellic acid and abscisin in aleurone layers of barley. Plant Physiol. 41:1008–1016

    Google Scholar 

  • Churchill GC, Reaney MJT, Gusta LV. 1994. Molecular modeling of the (S)-ABA binding site of the receptor involved in the induction of freezing tolerance: a hypothetical receptor model. J Plant Growth Regul 13:173–181

    Article  CAS  Google Scholar 

  • Churchill GC, Reaney MJT, Abrams SR, Gusta LV. 1998. Effects of abscisic acid and abscisic acid analogs on the induction of freezing tolerance of winter rye (Secale cereale L). Plant growth Regul 25:35–45

    Article  CAS  Google Scholar 

  • de la Cruz J, Kressler D, Linder P. 1999. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME. 2000. The role of phytochrome A and gibberellins in growth under long and short day condition studies in hybrid aspen. Ph.D. thesis, Swedish University of Agricultural Sciences, Umeå

  • Fayyaz MM, McCown BH, Beck GH. 1978. Effect of temperature, photoperiod and several growth substances on the cold hardiness of Chrysanthemum morifolium rhizome. Physiol Plant 44:73–76

    CAS  Google Scholar 

  • Flores A, Grau A, Laurich F, Dörfling K. 1988. Effect of new terpenoid analogues of abscisic acid on chilling and freezing resistance. J Plant Physiol 132:362–369

    CAS  Google Scholar 

  • Fuchigami LH, Evert DR, Weiser CJ. 1971a. A translocatable cold hardiness promoter. Plant Physiol 47:164–167

    Google Scholar 

  • Fuchigami LH, Weiser CJ, Evert DR. 1971b. Induction of cold acclimation in Cornus stolonifera Michx. Plant Physiol 47:98–103

    Google Scholar 

  • Gibson SI. 2004. Sugar and phytohormone response pathways: navigating a signaling network. J Exp Bot 55:253–264

    PubMed  CAS  Google Scholar 

  • Gong Z, Dong C-H, Lee H, Zhu J, Xiong L. 2005. A DEAD box RNA helicase is essential for mRNA export and important for development and stress response in Arabidopsis. Plant Cell 17:256–267

    Article  PubMed  CAS  Google Scholar 

  • Green RM, Tobin EM. 2002. The role of CCAI and LHY in the plant circadian clock. Dev Cell 2:516–518

    Article  PubMed  CAS  Google Scholar 

  • Gusta LV, Fowler DB, Tyler NJ. 1982. The effect of abscisic acid and cytokinins on the cold hardiness of winter wheat. Can J Bot 60:301 –305

    CAS  Google Scholar 

  • Gusta LV, Wisniewski M, Nesbitt NT, Gusta LL. 2004. The effect of water, sugars and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves. Plant Physiol 135:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Haskell D. 1988. Detection of polypeptides associated with the cold acclimation process in spinach. Electrophoresis 9:787–796

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Cook D, Reichman JL, Pineda O, Thomashow MF, Zhang JZ, 2002. Transcriptional factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed  CAS  Google Scholar 

  • Harrison MA, Walton DC. 1975. Abscisic acid metabolism in water-stressed bean leaves. Plant Physiol 56:250–254

    CAS  PubMed  Google Scholar 

  • Irving RM, Lanphear FO. 1968. Regulation of cold hardiness in Acer negundo. Plant Physiol 43:9–13

    CAS  PubMed  Google Scholar 

  • Irving RM, Lanphear FO. 1967. The long day leaf as a source of cold hardiness inhibitor. Plant Physiol 42:1384–1388

    CAS  Google Scholar 

  • Ishikawa M, Robertson AJ, Gusta LV. 1990. Effect of temperature, light, nutrients and dehardening on abscisic acid induced cold hardiness in Bromus inermis Leyss suspension cultured cells. Plant Cell Physiol 31:51–60

    CAS  Google Scholar 

  • JiaoY, Yang H, Ma L, Sun N, Yu H. 2003. A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol 133:1480–1493

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Mehta S, Turano FJ. 2004. The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss. Plant Cell Physiol 45:1380–1389

    Article  PubMed  CAS  Google Scholar 

  • Kim K-N, Cheong Y-H, Grant JJ, Pandey GK, Luan S. 2003. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    PubMed  CAS  Google Scholar 

  • Knight H, Trewaras AJ, Knight MR. 1996. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. 2004. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135:1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Lalk I, Dörfling K. 1985. Hardening, abscisic acid, praline and freezing resistance in two winter wheat varieties. Physiol Plant 63:287–292

    CAS  Google Scholar 

  • Lang V, Mäntylä E, Welin B, Sundberg B, Palva ET. 1994. Alteration in water status, endogenous abscisic acid content and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104:1341–1349

    PubMed  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B. 2001. The Arabidopsis HOS1 gene negatively regulates cold-signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    PubMed  CAS  Google Scholar 

  • Leon P, Sheen J. 2003. Sugar and hormone connections. Trends Plant Sci 8:110–116

    PubMed  CAS  Google Scholar 

  • Levitt J. 1972. Response of Plants to Environmental Stress, New York, NY, USA, Academic Press

    Google Scholar 

  • Li C, Puhakainen T, Welling A, Viherä-Aarnio A, Ernsten A. 2002. Cold acclimation in silver birch (Betula bendual Roth). Development of freezing tolerance in different times and climatic ecotypes. Physiol Plant 116:478–488

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S. 1998. Two transcription factors DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Livingston III DP, Henderson CA. 1998. Apoplastic sugars, fructans, fructan exohydrolase and investase in winter oat: responses to second phase cold-hardening. Plant Physiol 116:403–408

    Article  CAS  Google Scholar 

  • Lorsch JR 2002. RNA chaperones exist and DEAD box proteins get a life. Cell 109:797–800

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Kudia J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. 2002. Calmodulins and calcineurin B like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14 (suppl.):S389–S400

    PubMed  CAS  Google Scholar 

  • McLeester RC, Weiser CJ, Hall TC. 1969. Seasonal variations on freezing curves of stem sections of Cornus stolonifera Michx. Plant Cell Physiol 9:807–817

    Google Scholar 

  • Olien CR. 1967. Freezing stress and survival. Ann Rev Plant Physiol 18:387–408

    Google Scholar 

  • Olien CR. 1984. An adaptive response of rye to freezing. Crop Sci 24:51–54

    Google Scholar 

  • Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I.1997. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimation. Plant J 12:1339–1350

    Article  CAS  Google Scholar 

  • Oritani T, Kiyota H. 2003 Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T, Li C, Boije-Malm M, Kangasjärvi J, Heino P. 2004. Short day potentiation of low temperature-induced gene expression of a C repeat-binding factor controlled gene during cold acclimation in silver birch. Plant Physiol 24:4299–4307

    Google Scholar 

  • Reaney MJT, Gusta LV. 1987. Factors influencing the induction of freezing tolerance by abscisic acid in cell suspension cultures of Bromus inermis Leyss and Medicago sativa L. Plant Physiol 83:423–427

    Article  CAS  PubMed  Google Scholar 

  • Reaney MJT, Gusta LV. 1999. “Modelling sequential responses of plant cells to freezing and thawing” In: Margesin R, Schinner F (eds). Cold-adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology, Berlin, Germany, Springer-Verlag, pp 119–135

    Google Scholar 

  • Reaney MJT, Gusta LV, Abrams SR, Robertson AJ. 1989. The effects of abscisic acid, kinetin and gibberellin on freezing tolerance in smooth bromegrass (Bromus inermis) cell suspension. Can J. Bot 67:3640–3646

    Article  CAS  Google Scholar 

  • Rikin A, Waldman M, Richmond AE, Dovrat A. 1975. Hormonal regulation of morphogenesis and cold resistance: I. Modification by abscisic acid and by gibberellic acid in alfalfa (Medicago sativa) seedlings. J Exp Bot 26:175–183

    CAS  Google Scholar 

  • Robertson GW. 1966. The light composition of solar and sky spectra available to plants. Ecology 47:640–643

    Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV. 1995. The effect of continuous abscisic acid treatment on the growth, freezing tolerance and protein patterns of Bromus inermis (Leyss) cell suspension cultures. J Plant Physiol 145:137–142

    CAS  Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV, McKenzie S. 1994a. Abscisic acid-induced heat tolerance in Bromus inermis cell cultures. Plant Physiol 105:181–190

    Article  CAS  Google Scholar 

  • Robertson AJ, Reaney MJT, Wilen RW, Lamb N, Abrams SR. 1994b. Effect of abscisic acid metabolites and analogs on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell cultures. Plant Physiol 105:149–153

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sheen J. 1996. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamoguchi-Shinozaki 2000. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3: 217–223

  • Shropshire Jr W. 1972. “Phytochrome, a phytochromic sensor” In: Giese AG (eds). Photophysiology, Vol. 7. New York, NY, USA, Academic Press, pp. 33–72

    Google Scholar 

  • Steponkus PL, Lanphear FO. 1967. Light stimulation of cold acclimation: production of a translocatable promoter. Plant Physiol 42:1673–1679

    CAS  PubMed  Google Scholar 

  • Tanner NK, Linder P. 2001. DEAD/Hbox RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262

    Article  PubMed  CAS  Google Scholar 

  • Thomas TH, Waring PF, Robinson PM. 1965. Action of the sycamore “Dormin” as a gibberellic antagonist. Nature 205:1270–1272

    CAS  Google Scholar 

  • Thomashow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, others. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Usami T, Mochizuki N, Kondo M, Niskimura M, Nagatani A. 2004. Cryptochromes and phytochromes significantly regulate Arabidopsis root greening under blue light. Plant Cell Physiol 45:1798–1808

    Article  PubMed  CAS  Google Scholar 

  • Van Huystee RB, Weiser CJ, Li PH. 1996. Cold acclimation in Cornus stolonifera under natural and controlled photoperiod and temperature. Bot Gaz 128:200–205

    Google Scholar 

  • Wanner LA, Junttila O. 1999. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–399

    Article  PubMed  CAS  Google Scholar 

  • Weiser CJ. 1970. Cold resistance and injury in woody plants. Science 169:1269–1277

    PubMed  Google Scholar 

  • Welling A, Mortiz T, Palva ET, Junttila O. 2002. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641

    Article  PubMed  CAS  Google Scholar 

  • Wilen RW, Ewan BE, Gusta LV. 1994. The interaction of abscisic acid and jasmonic acid on the inhibition of seed germination and the induction of freezing tolerance. Can J Bot 72:1009–1017

    CAS  Google Scholar 

  • Wilen RW, Fu P, Robertson AJ, Abrams SR, Low NH, and others.1996. An abscisic acid (ABA) analog inhibits ABA-induced freezing tolerance and protein accumulation, but not ABA-induced sucrose uptake in a bromegrass (Bromus inermis Leyss) cell culture. Planta 200:138–143

    Article  CAS  Google Scholar 

  • Windsor ML, Milborrow BV, Abrams SR.1994. Stereochemical requirements of the saturable uptake carrier for abscisic acid in carrot suspension culture cells. J Exp Bot 45:227–233. <AQ29>

    CAS  Google Scholar 

  • Wisniewski M, Close TJ, Artlip T, Arora R. 1996. Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol Plant 96:496–505

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW. 2002. Allelic variation in human gene expression. Science 297:1143

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Endo T, Satoh S. 1998. Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic and biosynthesis. Plant Cell Physiol 39:307–312

    CAS  Google Scholar 

  • Young R. 1971. Effect of growth regulators on citrus seedling cold hardiness. J Am Soc Hort Sci 96:708–710

    CAS  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J. 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    PubMed  CAS  Google Scholar 

  • Zielinski RE 1998. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49:697–725.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Gusta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusta, L.V., Trischuk, R. & Weiser, C. Plant Cold Acclimation: The Role of Abscisic Acid. J Plant Growth Regul 24, 308–318 (2005). https://doi.org/10.1007/s00344-005-0079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-005-0079-x

Keywords

Navigation