Skip to main content
Log in

Breadmaking performance of protein enriched, gluten-free breads

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Soybean enriched, rice-based gluten-free breads were designed incorporating a structuring agent (hydroxypropylmethylcellulose, HPMC) and a processing aid (transglutaminase, TG). At dough level the effect of increasing amounts of soybean protein isolate (SPI), HPMC and water was studied in the Mixolab. Mixing and thermal characteristics showed the significant effect induced by water, soybean protein isolate, HPMC and TG, allowing the selection of the appropriate amounts for the breadmaking performance of enriched gluten-free breads. The single addition or in combination of 4% HPMC, 13% soybean and 1% TG produced significant changes in the physical properties of the rice-based gluten-free breads. The presence of SPI blended with rice flour produced a significant decrease in the specific volume of the bread, although this detrimental effect was partially counteracted by its combination with HPMC, decreasing also the crumb hardness. The micrographs of the crumb showed the beneficial effect of the HPMC, obtaining a more open aerated structure. Protein enriched, gluten-free breads can be obtained with a combination of SPI, HPMC and TG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Orth RA, Bushuk W (1972) Cereal Chem 49:268–275

    CAS  Google Scholar 

  2. Gujral HS, Guardiola I, Carbonell JV, Rosell CM (2003) J Agric Food Chem 51:3814–3818

    Article  CAS  Google Scholar 

  3. Gujral HS, Haros M, Rosell CM (2003) Cereal Chem 80(6):750–754

    Article  CAS  Google Scholar 

  4. Lopez ACB, Pereira AJG, Junqueira RG (2004) Braz Arch Biol Technol 47:63–70

    Article  Google Scholar 

  5. Huebner FR, Bietz JA, Webb BD, Juliano BO (1990) Cereal Chem 67:129–135

    CAS  Google Scholar 

  6. Nishita KD, Roberts RL, Bean MM (1976) Cereal Chem 53:626–635

    CAS  Google Scholar 

  7. Kang MY, Choi YH, Choi HC (1997) Korean J Food Sci Technol 29:700–704

    Google Scholar 

  8. Kobylañski JR, Pérez OE, Pilosof AMR (2004) Thermochim Acta 411:81–89

    Article  CAS  Google Scholar 

  9. Schober TJ, Bean SR, Boyle DL (2007) J Agric Food Chem 55:5137–5146

    Article  CAS  Google Scholar 

  10. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) J Food Eng 79(3):1033–1047

    Article  CAS  Google Scholar 

  11. Gujral HS, Rosell CM (2004) J Cereal Sci 39:225–230

    Article  CAS  Google Scholar 

  12. Gujral HS, Rosell CM (2004) Food Res Int 37:75–81

    Article  CAS  Google Scholar 

  13. Sivaramakrishnan HP, Senge B, Chattopadhyay PK (2004) J Food Eng 62(1):37–45

    Article  Google Scholar 

  14. McCarthy DF, Gallagher E, Gormley TR, Schober TJ, Arendt EK (2005) Cereal Chem 82:609–615

    Article  CAS  Google Scholar 

  15. Gallagher E, Kunkel A, Gormley TR, Arendt EK (2003) Eur Food Res Technol 218:44–48

    Article  CAS  Google Scholar 

  16. Ribotta PD, Ausar SF, Morcillo MH, Perez GT, Beltramo DM, Leon AE (2004) J Sci Food Agric 84:1969–1974

    Article  CAS  Google Scholar 

  17. Moore MM, Heinbockel M, Dockery P, Ulmer HM, Arendt EK (2006) Cereal Chem 83(1):28–36

    Article  CAS  Google Scholar 

  18. Marco C, Rosell CM (2008) J Food Eng 84:132–139

    Article  CAS  Google Scholar 

  19. Iqbal A, Khalil IA, Ateeq N, Khan MS (2006) Food Chem 97:331–335

    Article  CAS  Google Scholar 

  20. Anderson JW, Johnstone BM, Cook-Newell ME (1995) New Engl J Med 333:276–282

    Article  CAS  Google Scholar 

  21. Sánchez HD, Osella CA, de la Torre MA (2004) Food Sci Technol Int 10(1):5–9

    Article  CAS  Google Scholar 

  22. D’Appolonia BL (1997) Cereal Chem 54:53–63

    Google Scholar 

  23. Doxastakis G, Zafiriadis I, Irakli M, Marlani H, Tananaki C (2002) Food Chem 77:219–227

    Article  CAS  Google Scholar 

  24. Ryan KJ, Homco-Ryan CL, Jenson J, Robbins KL, Prestat C, Brewer MS (2002) Cereal Chem 79:434–438

    Article  CAS  Google Scholar 

  25. Maforimbo E, Skurray G, Uthayakumaran S, Wrigley CW (2006) J Cereal Sci 43:223–229

    Article  CAS  Google Scholar 

  26. Basman A, Koksel H, Ng PKW (2002) J Food Sci 67(7):2654–2658

    Article  CAS  Google Scholar 

  27. Tang CH, Wu H, Chen Z, Yang XQ (2006) Food Res Int 39(1):87–97

    Article  CAS  Google Scholar 

  28. Bonet A, Blaszczak W, Rosell CM (2006) Cereal Chem 83(6):655–662

    Article  CAS  Google Scholar 

  29. Marco C, Pérez G, León A, Rosell CM (2008) Cereal Chem 85:59–64

    Article  CAS  Google Scholar 

  30. Rosell CM, Collar C, Haros M (2007) Food Hydrocolloids 21:452–462

    Article  CAS  Google Scholar 

  31. Collar C, Bollaín C, Rosell CM (2007) Food Sci Tech Int 13(2):99–107

    Article  CAS  Google Scholar 

  32. Dobraszczyk BJ, Morgenstern MP (2003) J Cereal Sci 38:229–245

    Article  CAS  Google Scholar 

  33. Collar C, Bollaín C (2005) Eur Food Res Technol 220:372–379

    Article  CAS  Google Scholar 

  34. Collar C, Santos E, Rosell CM (2006) Cereal Chem 83:370–376

    Article  CAS  Google Scholar 

  35. Ahlborn GJ, Pike OA, Hendrix SB, Hess WM, Huber CS (2005) Cereal Chem 82(3):328–335

    Article  CAS  Google Scholar 

  36. Rosell CM, Marco C (2007) In: Proceedings of 57th Australian cereal chem conf, pp 155–158

  37. Gras PW, Carpenter HC, Anderssen RS (2000) J Cereal Sci 31:1–13

    Article  CAS  Google Scholar 

  38. Rosell CM, Foegeding A (2007) Food Hydrocolloids 21:1092–1100

    Article  CAS  Google Scholar 

  39. Hermansson AM (1986) J Am Oil Chem Soc 63:658–666

    Article  CAS  Google Scholar 

  40. Ribotta PD, Arnulphi SA, León AE, Añón MC (2005) J Sci Food Agric 85(11):1889–1896

    Article  CAS  Google Scholar 

  41. Bárcenas ME, Rosell CM (2005) Food Hydroclloids 19(6):1037–1043

    Article  CAS  Google Scholar 

  42. Haque A, Morris ER (1994) Food Res Intl 27(4):379–393

    Article  CAS  Google Scholar 

  43. Bell DA (1990) Cereal Foods World 35:1001–1006

    Google Scholar 

  44. Collar C, Bollaín C, Angioloni A (2005) J Food Eng 70:479–488

    Google Scholar 

  45. Sharadanant R, Khan K (2006) Cereal Chem 83(4):411–417

    Article  CAS  Google Scholar 

  46. Armero E, Collar C (1998) J Cereal Sci 28:165–174

    Article  CAS  Google Scholar 

  47. Collar C, Armero E, Martínez J (1998) Z Lebensm Unters Forsch A 207:110–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Comisión Interministerial de Ciencia y Tecnología Project (MCYT, AGL2005-05192-C04-01) and Consejo Superior de Investigaciones Científicas (CSIC). C. Marco gratefully acknowledges the Ministerio de Educación y Ciencia for the grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina M. Rosell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marco, C., Rosell, C.M. Breadmaking performance of protein enriched, gluten-free breads. Eur Food Res Technol 227, 1205–1213 (2008). https://doi.org/10.1007/s00217-008-0838-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0838-6

Keywords

Navigation